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Chapter 1

Vectors

In This Chapter:

✔ Scalar and Vector Quantities
✔ Vector Addition: Graphical Method
✔ Trigonometry
✔ Pythagorean Theorem
✔ Vector Addition: Trigonometric

Method
✔ Resolving a Vector
✔ Vector Addition: Component Method

Scalar and Vector Quantities

A scalar quantity has only magnitude and is completely specified by a
number and a unit. Examples are mass (a stone has a mass of 2 kg), vol-
ume (a bottle has a volume of 1.5 liters), and frequency (house current
has a frequency of 60 Hz). Scalar quantities of the
same kind are added by using ordinary arithmetic.

A vector quantity has both magnitude and di-
rection. Examples are displacement (an airplane has
flown 200 km to the southwest), velocity (a car is
moving 60 km/h to the north), and force (a person

1
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applies an upward force of 25 newtons to a package). Symbols of vector
quantities are printed in boldface type (v = velocity, F = force). When vec-
tor quantities of the same kind are added, their directions must be taken
into account.

Vector Addition: Graphical Method

A vector is represented by an arrow whose length is proportional to a cer-
tain vector quantity and whose direction indicates the direction of the
quantity.

To add vector B to vector A, draw B so that its tail is at the head of
A. The vector sum A + B is the vector R that joins the tail of A and the
head of B (Figure 1-1). Usually, R is called the resultant of A and B. The
order in which A and B are added is not significant, so that A + B = B +
A (Figures 1-1 and 1-2).

2 APPLIED PHYSICS

Figure 1-1

Figure 1-2

Exactly the same procedure is followed when more than two vectors
of the same kind are to be added. The vectors are strung together head to
tail (being careful to preserve their correct lengths and directions), and
the resultant R is the vector drawn from the tail of the first vector to the
head of the last. The order in which the vectors are added does not mat-
ter (Figure 1-3).



Solved Problem 1.1 A woman walks eastward for 5 km and then north-
ward for 10 km. How far is she from her starting point? If she had walked
directly to her destination, in what direction would she have headed?

Solution. From Figure 1-4, the length of the resultant vector R corre-
sponds to a distance of 11.2 km, and a protractor shows that its direction
is 27� east of north. 

Trigonometry

Although it is possible to determine the magnitude and direction of the
resultant of two or more vectors of the same kind graphically with ruler
or protractor, this procedure is not very exact. For accurate results, it is
necessary to use trigonometry.

CHAPTER 1: Vectors 3

Figure 1-3

Figure 1-4



A right triangle is a triangle whose two sides are perpendicular. The
hypotenuse of a right triangle is the side opposite the right angle, as in
Figure 1-5; the hypotenuse is always the longest side.

The three basic trigonometric functions—the sine, cosine, and tan-
gent of an angle—are defined in terms of the right triangle of Figure 1-5
as follows:

The inverse of a trigonometric function is the angle whose function
is given. Thus the inverse of sin q is the angle q. The names and abbre-
viations of the inverse trigonometric functions are as follows:
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Figure 1-5
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Remember

In trigonometry, an expression such
as sin−1x does not signify 1/(sin x),
even though in algebra, the expo-
nent −1 signifies a reciprocal.

Pythagorean Theorem

The Pythagorean theorem states that the sum of the squares of the short
sides of a right triangle is equal to the square of its hypotenuse. For the
triangle of Figure 1-5,

a2 + b2 = c2

Hence, we can always express the length of any of the sides of a right tri-
angle in terms of the lengths of the other sides:

Another useful relationship is that the sum of the interior angles of
any triangle is 180°. Since one of the angles in a right triangle is 90°, the
sum of the other two must be 90°. Thus, in Figure 1-5, q + f = 90°.

Of the six quantities that characterize a triangle—three sides and
three angles—we must know the values of at least three, including one of
the sides, in order to calculate the others. In a right triangle, one of the
angles is always 90°, so all we need are the lengths of any two sides or
the length of one side plus the value of one of the other angles to find the
other sides and angles.

Solved Problem 1.2 Find the values of the sine, cosine, and tangent of
angle q in Figure 1-6.

a c b b c a c a b= − = − = +2 2 2 2 2 2        
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Solution.

Vector Addition: Trigonometric Method

It is easy to apply trigonometry to find the resultant R of two vectors A
and B that are perpendicular to each other. The magnitude of the resul-
tant is given by the Pythagorean theorem as:

and the angle between R and A (Figure 1-7) may be found from

by examining a table of tangents or by using a calculator to determine

.tan−1 B
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Resolving a Vector

Just as two or more vectors can be added to yield a single resultant vec-
tor, so it is possible to break up a single vector into two or more other vec-
tors. If vectors A and B are together equivalent to vector C, then vector
C is equivalent to the two vectors A and B (Figure 1-8). When a vector
is replaced by two or more others, the process is called resolving the vec-
tor, and the new vectors are known as the components of the initial vec-
tor.

The components into which a vector is resolved are nearly always
chosen to be perpendicular to one another. Figure 1-9 shows a wagon be-
ing pulled by a man with force F. Because the wagon moves horizontal-
ly, the entire force is not effective in influencing its motion.

CHAPTER 1: Vectors 7
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Figure 1-9
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The force F may be resolved into two component vectors Fx and Fy,
where

Fx = horizontal component of F

Fy = vertical component of F

The magnitudes of these components are

Evidently, the component Fx is responsible for the wagon’s motion, and
if we were interested in working out the details of this motion, we would
need to consider only Fx.

In Figure 1-9, the force F lies in a vertical plane, and the two com-
ponents Fx and Fy are enough to describe it. In general, however, three
mutually perpendicular components are required to completely describe
the magnitude and direction of a vector quantity. It is customary to call
the directions of these components the x, y, and z axes, as in Figure 1-10.
The component of some vector A in these directions are accordingly de-
noted Ax, Ay, and Az. If a component falls on the negative part of an axis,
its magnitude is considered negative. Thus, if Az were downward in Fig-
ure 1-10 instead of upward and its length were equivalent to, say, 12 N,
we would write Az = −12 N. (The newton (N) is the SI unit of force; it is
equal to 0.225 lb.)

F F F Fx y= =cos sinq q             



Solved Problem 1.3 The man in Figure 1-9 exerts a force of 100 N on
the wagon at an angle of q = 30° above the horizontal. Find the horizon-
tal and vertical components of this force.

Solution. The magnitudes of Fx and Fy are, respectively,

We note that Fx + Fy = 136.6 N although F itself has the magnitude F =
100 N. What is wrong? The answer is that nothing is wrong; because Fx
and Fy are just the magnitudes of the vectors Fx and Fy, it is meaningless
to add them. However, we can certainly add the vectors Fx and Fy to find
the magnitude of their resultant F. Because Fx and Fy are perpendicular,

as we expect.

F F Fx y= + = ( ) + ( ) =2 2 2 286 6 50 0 100. . N  N  N

F F

F F
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q

q

100 30 86 6

100 30 50 0
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Vector Addition: Component Method

When vectors to be added are not perpendicular, the
method of addition by components described below can
be used. There do exist trigonometric procedures for
dealing with oblique triangles (the law of sines and the
law of cosines), but these are not necessary since the
component method is entirely general in its application.

To add two or more vectors A, B, C, … by the component method,
follow this procedure:

1. Resolve the initial vectors into components in the x, y, and z di-
rections.

2. Add the components in the x direction to give Rx, add the com-
ponents in the y direction to give Ry, and add the components in
the z direction to give Rz. That is, the magnitudes of Rx, Ry, and
Rz are given by, respectively,

3. Calculate the magnitude and direction of the resultant R from its
components Rx, Ry, and Rz by using the Pythagorean theorem:

If the vectors being added all lie in the same plane, only two components
need to be considered.

R R R Rx y z= + +2 2 2

R A B C

R A B C

R A B C

x x x x

y y y y

z z z z

= + + +
= + + +

= + + +

L

L

L
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Chapter 2

Motion

In This Chapter:

✔ Velocity
✔ Acceleration
✔ Distance, Velocity, and Acceleration
✔ Acceleration of Gravity
✔ Falling Bodies
✔ Projectile Motion 

Velocity

The velocity of a body is a vector quantity that describes both how fast it
is moving and the direction in which it is headed.

In the case of a body traveling in a straight line, its velocity is sim-
ply the rate at which it covers distance. The average velocity v̄ of such a
body when it covers the distance s in the time t is

The average velocity of a body during the time t does not complete-
ly describe its motion, however, because during the time t, it may some-

v
s

t
=

Average velocity =  
distance

time

11
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times have gone faster than v̄ and sometimes slower. The velocity of a
body at any given moment is called its instantaneous velocity and is giv-
en by

Here, Ds is the distance the body has gone in the very short time interval
Dt at the specified moment. (D is the capital Greek letter delta.) Instanta-
neous velocity is what a car’s speedometer indicates.

When the instantaneous velocity of a body does not change, it is
moving at constant velocity. For the case of constant velocity, the basic
formula is

Solved Problem 2.1 The velocity of sound in air at sea level is about 343
m/s. If a person hears a clap of thunder 3.00 s after seeing a lightning
flash, how far away was the lightning?

Solution. The velocity of light is so great compared with the velocity of
sound that the time needed for the light of the flash to reach the person
can be neglected. Hence

s = vt = (343 m/s)(3.00 s) = 1029 m = 1.03 km

Acceleration

A body whose velocity is changing is accelerated. A
body is accelerated when its velocity is increasing, de-
creasing, or changing its direction. 

The acceleration of a body is the rate at which its
velocity is changing. If a body moving in a straight line
has a velocity of v0 at the start of a certain time interval
t and of v at the end, its acceleration is

s vt=
Distance =  (constant velocity)(time)

v
s

tinst = ∆
∆
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A positive acceleration means an increase in velocity; a negative accel-
eration (sometimes called deceleration) means a decrease in velocity.
Only constant accelerations are considered here.

The defining formula for acceleration can be rewritten to give the fi-
nal velocity v of an accelerated body:

We can also solve for the time t in terms of v0, v, and a:

Velocity has the dimensions of distance/time. Acceleration has the di-
mensions of velocity/time or distance/time2. A typical acceleration unit
is the meter/second2 (meter per second squared). Sometimes two differ-
ent time units are convenient; for instance, the acceleration of a car that
goes from rest to 90 km/h in 10 s might be expressed as a = 9 (km/h)/s.

Solved Problem 2.2 A car starts from rest and reaches a final velocity of
40 m/s in 10 s. (a) What is its acceleration? (b) If its acceleration remains
the same, what will its velocity be 5 s later?

Solution. (a) Here v0 = 0. Hence

(b) Now v0 = 40 m/s, so

v v at= + = + = + =0 40 m/s  (4 m/s2 )(5 s)  40 m/s  20 m/s  60 m/s

a
v

t
= = =40

10
4

 m/s

 s
 m/s2

t
v v

a
= −

=

0

Time
velocity change

acceleration

v v at= +
= +

0

Final velocity initial velocity  (acceleration)(time)

a
v v

t
= −

=

0

Acceleration
velocity change

time
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Distance, Velocity, and Acceleration

Let us consider a body whose velocity is v0 when it starts to be acceler-
ated at a constant rate. After time t, the final velocity of the body will be

How far does the body go during the time interval t? The average veloc-
ity v̄ of the body is

and so

Since v = v0 + at, another way to specify the distance covered during t is

If the body is accelerated from rest, v0 = 0 and

Another useful formula gives the final velocity of a body in terms of
its initial velocity, its acceleration, and the distance it has traveled during
the acceleration:

This can be solved for the distance s to give

In the case of a body that starts from rest, v0 = 0 and

s
v v

a
= −2

0
2

2

v v as2
0
2 2= +

s at= 1

2
2

s
v v at

t v t at= + +



 = +0 0

0
2

2

1

2

s vt
v v

t= = +





0

2

v
v v= +0

2

v v at= +0
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Table 2.1 summarizes the formulas for motion under constant accelera-
tion.

Acceleration of Gravity

All bodies in free fall near the earth’s surface have the same downward
acceleration of 

g = 9.8 m/s2 = 32 ft/s2

A body falling from rest in a vacuum thus has a velocity of 32 ft/s at the
end of the first second, 64 ft/s at the end of the next second, and so forth.
The farther the body falls, the faster it moves.

You Need to Know 

A body in free fall has the same downward accel-
eration whether it starts from rest or has an initial
velocity in some direction.

The presence of air affects the motion of falling
bodies partly through buoyancy and partly through air
resistance. Thus two different objects falling in air
from the same height will not, in general, reach the
ground at exactly the same time. Because air resistance

v as s
v

a
= =2

2

2
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increases with velocity, eventually a falling body reaches a terminal ve-
locity that depends on its mass, size, and shape, and it cannot fall any
faster than that.

Falling Bodies

When buoyancy and air resistance can be neglected, a falling body has
the constant acceleration g and the formulas for uniformly accelerated
motion apply. Thus a body dropped from rest has the velocity

v = gt

after time t, and it has fallen through a vertical distance of

From the latter formula, we see that

and so the velocity of the body is related to the distance it has fallen by 
v = gt, or

To reach a certain height h, a body thrown upward must have the same
initial velocity as the final velocity of a body falling from that height,
namely, .

Solved Problem 2.3 What velocity must a ball have when thrown up-
ward if it is to reach a height of 15 m?

Solution. The upward velocity the ball must have is the same as the
downward velocity the ball would have if dropped from that height.
Hence

v gh s= = ( )( )( ) = =2 2 9 8 15 294 172. / m / s  m  m  m / s2 2

v gh= 2

v gh= 2

t
h

g
= 2

h gt= 1

2
2
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Projectile Motion

The formulas for straight-line motion can be used to analyze the hori-
zontal and vertical aspects of a projectile’s flight separately because these
are independent of each other. If air resistance is neglected, the horizon-
tal velocity component vx remains constant during the flight. The effect
of gravity on the vertical component vy is to provide a downward accel-
eration. If vy is initially upward, vy first decreases to 0 and then increases
in the downward direction.

The range of a projectile launched at an angle q above the horizon-
tal with initial velocity v0 is

The time of flight is

If q1 is an angle other than 45� that corresponds to a range R, then a sec-
ond angle q2 for the same range is given by

q2 = 90� − q1

as shown in Figure 2−1.

T
v

g
= 2 0 sin  q

R
v

g
= 0

2

sin  2q
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Solved Problem 2.4 A football is thrown with a velocity of 10 m/s at an
angle of 30� above the horizontal. (a) How far away should its intended
receiver be? (b) What will the time of flight be?

Solution.
(a)

(b)

T
v

g

s= = ( )( ) =2 2 10
1 020 sin (sin )

.
 m / s  30

9.8 m / s
 s

o

2

q

R
v

g
= = ( )











=0
2 210

9 8
60 8 8sin

.
(sin ) . 2

 m / s

 m / s
 m2q o
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Chapter 3

Newton’s Laws
of Motion

In This Chapter:

✔ First Law of Motion
✔ Mass
✔ Second Law of Motion
✔ Weight
✔ British System of Units
✔ Free-Body Diagrams and Tension  
✔ Third Law of Motion
✔ Static and Kinetic Friction
✔ Coefficient of Friction

First Law of Motion

According to Newton’s first law of motion, if no net
force acts on it, a body at rest remains at rest and a
body in motion remains in motion at constant veloci-
ty (that is, at constant speed in a straight line).

This law provides a definition of force: A force is
any influence that can change the velocity of a body.

Two or more forces act on a body without affect-
ing its velocity if the forces cancel one another out.

19

Copyright 2003 by The McGraw-Hill Companies, Inc. Click Here for Terms of Use.



What is needed for a velocity change is a net force, or unbalanced force.
To accelerate something, a net force must be applied to it. Conversely,
every acceleration is due to the action of a net force.

Mass

The property a body has of resisting any change in its state of rest or uni-
form motion is called inertia. The inertia of a body is related to what we
think of as the amount of matter it contains. A quantitative measure of in-
ertia is mass: The more mass a body has, the less its acceleration when a
given net force acts on it. The SI unit of mass is the kilogram (kg).

Note!

A liter of water, which is 1.057 quarts, has a mass
of almost exactly 1 kg. 

Second Law of Motion

According to Newton’s second law of motion, the net force acting on a
body equals the product of the mass and the acceleration of the body. The
direction of the force is the same as that of the acceleration.

In equation form,

Net force is sometimes designated SF, where S (Greek capital letter sig-
ma) means “sum of.” The second law of motion is the key to under-
standing the behavior of moving bodies since it links cause (force) and
effect (acceleration) in a definite way.

In the SI system, the unit for force is the newton (N): A newton is that
net force which, when applied to a 1-kg mass, gives it an acceleration of
1 m/s2.

F a= m

20 APPLIED PHYSICS



Solved Problem 3.1 A 10-kg body has an acceleration of 5 m/s2. What
is the net force acting on it?

Solution.

Weight

The weight of a body is the gravitational force with which the earth at-
tracts the body. If a person weighs 600 N (135 lb), this means the earth
pulls that person down with a force of 600 N. Weight (a vector quantity)
is different from mass (a scalar quantity), which is a measure of the re-
sponse of a body to an applied force. The weight of a body varies with its
location near the earth (or other astronomical body), whereas its mass is
the same everywhere in the universe. 

The weight of a body is the force that causes it to be accelerated
downward with the acceleration of gravity g. Hence, from the second law
of motion, with F = w and a = g,

Because g is constant near the earth’s surface, the weight of a body there
is proportional to its mass—a large mass is heavier than a small one. 

British System of Units

In the British system, the unit of mass is the slug and the unit of force is
the pound (lb). A net force of 1 lb acting on a mass of 1 slug gives it an
acceleration of 1 ft/s2. Table 3.1 shows how units of mass and force in
the SI and British systems are related. 

w mg=
=Weight  (mass)(acceleration of gravity)

F ma= = ( ) =10 5 50 kg  m/s  N2( )
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Free-Body Diagrams and Tension

In all but the simplest problems that involve the second law of motion, it
is helpful to draw a free-body diagram of the situation. This is a vector
diagram that shows all of the forces that act on the body whose motion is
being studied.  Forces that the body exerts on anything else should not be
included, since such forces do not affect the body’s motion.   

Forces are often transmitted by cables, a general term that includes
strings, ropes, and chains. Cables can change the direction of a force with
the help of a pulley while leaving the magnitude of the force unchanged.
The tension T in a cable is the magnitude of the force that any part of the
cable exerts on the adjoining part (Figure 3-1). The tension is the same in
both directions in the cable, and T is the same along the entire cable if the
cable’s mass is small. Only cables of negligible mass will be considered
here, so T can be thought of as the magnitude of the force that either end
of a cable exerts on whatever it is attached to.

Solved Problem 3.2 Figure 3-2 shows a 5-kg block A which hangs from
a string that passes over a frictionless pulley and is joined at its other end
to a 12-kg block B that lies on a frictionless table. 

(a) Find the acceleration of the two blocks. (b) Find the tension in the
string.

Solution. (a) See Figure 3-2. The blocks have accelerations of the same
magnitude a because they are joined by the string. The net force FB on B
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equals the tension T in the string. From the second law of motion, taking
the left as the + direction so that a will come out positive,

FB = T = mBa

The net force FA on A is the difference between its weight mAg, which
acts downward, and the tension T in the string, which acts upward on it.
Taking downward as + so that the two accelerations have the same sign, 

FA = mAg − T = mAa

We now have two equations in the two unknowns, a and T. The easiest
way to solve them is to start by substituting T = mBa from the first equa-
tion into the second. This gives
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(b) We can use either of the original equations to find the tension T. From
the first,

T m aB= = ( ) =12 2 9 35 kg  m/s  N2( . )

m g T m g m a m a

m g m m a

a
m g

m m

A A B A

A A B

A

A B

− = − =

= +( )

=
+

=
( )( )

+
=

5 9 8

5 12
2 9

 kg  m / s

 kg   kg
 m / s

2
2

.
.
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Third Law of Motion

According to Newton’s third law of motion, when one body exerts a force
on another body, the second body exerts on the first an equal force in the
opposite direction. The third law of motion applies to two different forces
on two different bodies: the action force one body exerts on the other, and
the equal but opposite reaction force the second body exerts on the first.
Action and reaction forces never cancel each other out because they act
on different bodies.

Solved Problem 3.3 A book rests on a table. (a) Show the forces acting
on the table and the corresponding reaction forces. (b) Why do the forces
acting on the table not cause it to move? 

Solution.
(a) See Figure 3-3.

(b) The forces that act on the table have a vector sum of zero, so there is
no net force acting on it.
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Static and Kinetic Friction

Frictional forces act to oppose relative motion between surfaces that are
in contact. Such forces act parallel to the surfaces. 

Static friction occurs between surfaces at rest rel-
ative to each other. When an increasing force is ap-
plied to a book resting on a table, for instance, the
force of static friction at first increases as well to pre-
vent motion.  In a given situation, static friction has a
certain maximum value called starting friction. When
the force applied to the book is greater than the start-
ing friction, the book begins to move across the table. The kinetic friction
(or sliding friction) that occurs afterward is usually less than the starting
friction, so less force is needed to keep the book moving than to start it
moving (Figure 3-4). 

Coefficient of Friction

The frictional force between two surfaces depends on the normal (per-
pendicular) force N pressing them together and on the nature of the sur-
faces. The latter factor is expressed quantitatively in the coefficient of fric-
tion m (Greek letter mu) whose value depends on the materials in contact.
The frictional force is experimentally found to be:
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In the case of static friction, Ff increases as the applied force increases
until the limiting value of msN is reached. Thus when there is no motion,
msN gives the starting frictional force, not the actual frictional force. Up
to msN, the actual frictional force Ff has the same magnitude as the ap-
plied force but is in the opposite direction. 

When the applied force exceeds the starting frictional force msN, mo-
tion begins and now the coefficient of kinetic friction mk governs the fric-
tional force. In this case, mkN gives the actual amount of Ff, which no
longer depends on the applied force and is constant over a fairly wide
range of relative velocities. 

Solved Problem 3.4 A force of 200 N is just sufficient to start a 50-kg
steel trunk moving across a wooden floor. Find the coefficient of static
friction.

Solution. The normal force is the trunk’s weight mg. Hence,

ms
F

N

F

mg
= = =

( )( ) =200

9 8
0 41

 N

50 kg  m / s2.
.

F N

F N

f s

f k

≤

=

m

m

    Static friction

    Kinetic friction
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Chapter 4

Energy

In This Chapter:

✔ Work
✔ Power
✔ Kinetic Energy
✔ Potential Energy
✔ Conservation of Energy 

Work

Work is a measure of the amount of change (in a general sense) that a force
produces when it acts on a body. The change may be in the velocity of
the body, in its position, or in its size or shape.

By definition, the work done by a force acting on a body is equal to
the product of the force and the distance through which the force acts,
provided that F and s are in the same direction. Thus

W = Fs
Work = (force)(distance)

Work is a scalar quantity; no direction is associated with it.
If F and s are not parallel but F is at the angle q with respect to s,

then

28
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W = Fs cos q

Since cos 0� = 1, this formula becomes W = Fs when F is parallel to s.
When F is perpendicular to s, q = 90� and cos 90� = 0. No work is done
in this case (Figure 4-1).
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Figure 4-1

The unit of work is the product of a force unit and a length unit. In
SI units, the unit of work is the joule (J).

SI units: 1 joule (J) = 1 newton-meter = 0.738 ft•lb

Solved Problem 4.1 A horizontal force of 420 N is used to push a 100-
kg crate for 5 m across a level warehouse floor. How much work is done?



Solution. The mass of the crate does not matter here. Since the force is
parallel to the displacement,

W = Fs = (420 N)(5 m) = 2100 J = 2.1 kJ

Power

Power is the rate at which work is done by a force. Thus

Remember

The more power something has, the
more work it can perform in a given
time.

Two special units of power are in wide use, the watt and the horse-
power, where

1 watt (W) = 1 J/s = 1.34 × 10−3 hp
1 horsepower (hp) = 550 ft�lb/s = 746 W

When a constant force F does work on a body that is moving at the
constant velocity v, if F is parallel to v, the power involved is

because s/t = v; that is

P Fv=

= ( )( )Power  force velocity

P
W

t

Fs

t
Fv= = =

P
W

t
=

=Power
work done

time
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Solved Problem 4.2 A 40-kg woman runs up a staircase 4 m high in 5 s.
Find her minimum power output. 

Solution. The minimum downward force the woman’s legs must exert
is equal to her weight mg. Hence

Kinetic Energy

Energy is that property something has that enables it to do work. The
more energy something has, the more work it can perform. Two general
categories of energy are kinetic energy and potential energy.

Note!

The units of energy are the same as those of work,
namely the joule and the foot-pound.

The energy a body has by virtue of its motion is called kinetic ener-
gy. If the body’s mass is m and its velocity is v, its kinetic energy is

Kinetic energy = KE =

Solved Problem 4.3 Find the kinetic energy of a 1000-kg car whose ve-
locity is 20 m/s.

Solution. KE =

Potential Energy

The energy a body has by virtue of its position is called
potential energy. A book held above the floor has grav-
itational potential energy because the book can do work
on something else as it falls; a nail held near a magnet

1

2

1

2
1000 20 2 102 2 5mv = ( )( ) = × kg  m / s  J

1

2
2mv

P
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t
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t

mgh

t
= = = =

( )( )( )
=
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314
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has magnetic potential energy because the nail can do work as it moves
toward the magnet; the wound spring in a watch has elastic potential en-
ergy because the spring can do work as it unwinds.

The gravitational potential energy of a body of mass m at a height h
above a given reference level is:

Gravitational potential energy = PE = mgh

where g is the acceleration due to gravity. 

Solved Problem 4.4 A 1.5-kg book is held 60 cm above a desk whose
top is 70 cm above the floor. Find the potential energy of the book (a)
with respect to the desk, and (b) with respect to the floor. 

Solution.

(a) Here h = 60 cm = 0.6 m, so

PE = mgh = (1.5 kg)(9.8 m/s2)(0.6 m) = 8.8 J

(b) The book is h = 60 cm + 70 cm = 130 cm = 1.3 m above the floor,
so its PE with respect to the floor is

PE = mgh = (1.5 kg)(9.8 m/s2)(1.3 m) = 19.1 J

Conservation of Energy

According to the law of conservation of energy, energy cannot be creat-
ed or destroyed, although it can be transformed from one kind to anoth-
er. The total amount of energy in the universe is constant. A falling stone
provides a simple example: More and more of its initial potential energy
turns to kinetic energy as its velocity increases, until finally all its PE has
become KE when it strikes the ground. The KE of the stone is then trans-
ferred to the ground as work by the impact.

In general,

Work done on an object = change in object’s KE + change
in object’s PE + work done by object

Work done by an object against friction becomes heat.
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Chapter 5

Momentum

In This Chapter:

✔ Linear Momentum
✔ Impulse
✔ Conservation of Linear Momentum
✔ Collisions

Linear Momentum

Work and energy are scalar quantities that have no di-
rections associated with them. When two or more bod-
ies interact with one another, or a single body breaks
up into two or more new bodies, the various directions
of motion cannot be related by energy considerations
alone. The vector quantities, called linear momentum
and impulse, are important in analyzing such events.

The linear momentum (usually called simply momentum) of a body
of mass m and velocity v is the product of m and v:

Momentum = mv

The units of momentum are kilogram-meters per second and slug-feet per
second. The direction of the momentum of a body is the same as the di-
rection in which it is moving.

The greater the momentum of a body, the greater its tendency to con-
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tinue in motion. Thus, a baseball that is solidly struck by a bat (v large)
is harder to stop than a baseball thrown by hand (v small), and an iron
shot (m large) is harder to stop than a baseball (m small) of the same ve-
locity.

Solved Problem 5.1 Find the momentum of a 50-kg boy running at 6 m/s. 

Solution. The momentum can be calculated as follows:

mv = (50 kg)(6 m/s) = 300 kg�m/s

Impulse

A force F that acts on a body during time t provides the body with an im-
pulse of Ft:

Impulse = Ft = (force)(time interval)

You Need to Know 

The units of impulse are newton-seconds and
pound-seconds.

When a force acts on a body to produce a change in its momentum,
the momentum change m(v2 − v1) is equal to the impulse provided by the
force. Thus

Ft = m(v2 − v1)

Impulse = momentum change

Solved Problem 5.2 A 46-g golf ball is struck by a club and flies off at
70 m/s. If the head of the club was in contact with the ball for 0.5 ms,
what was the average force on the ball during the impact?
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Solution. The ball started from rest, so v1 = 0 and its momentum change
is:

m(v2 − v1) = mv2 = (0.046 kg)(70 m/s) = 3.22 kg�m/s

Since 1 ms = 1 millisecond = 10−3 s, here t = 0.5 ms = 5 × 10−4 s and

Conservation of Linear Momentum

According to the law of conservation of linear momentum, when the vec-
tor sum of the external forces that act on a system of bodies equals zero,
the total linear momentum of the system remains constant no matter what
momentum changes occur within the system.

Although interactions within the system may
change the distribution of the total momentum among
the various bodies in the system, the total momentum
does not change. Such interactions can give rise to two
general classes of events: explosions, in which an orig-
inal single body flies apart into separate bodies, and collisions, in which
two or more bodies collide and either stick together or move apart, in each
case with a redistribution of the original total momentum.

Solved Problem 5.3 A rocket explodes in midair. How does this affect
(a) its total momentum and (b) its total kinetic energy?

Solution.

(a) The total momentum remains the same because no external
forces acted on the rocket.

(b) The total kinetic energy increases because the rocket fragments
received additional KE from the explosion.

F
m v v

t
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×
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2 1 33 22
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Collisions

Momentum is also conserved in collisions. If a moving billiard ball
strikes a stationary one, the two move off in such a way that the vector
sum of their momenta is the same as the initial momentum of the first ball
(Figure 5-1). This is true even if the balls move off in different directions. 

A perfectly elastic collision is one in which the bodies involved
move apart in such a way that kinetic energy as well as momentum is con-
served. In a perfectly inelastic collision, the bodies stick together and the
kinetic energy loss is the maximum possible consistent with momentum
conservation. Most collisions are intermediate between these two ex-
tremes.

Solved Problem 5.4 A 2000-lb car moving at 50 mi/h collides head-on
with a 3000-lb car moving at 20 mi/h, and the two cars stick together.
Which way does the wreckage move?

Solution. The 2000-lb car had the greater initial momentum, so the
wreckage moves in the same direction it had.

Figure 5-1
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Chapter 6

Circular
Motion and
Gravitation

In This Chapter:

✔ Centripetal Acceleration
✔ Centripetal Force
✔ Motion in a Vertical Circle
✔ Gravitation
✔ Satellite Motion

Centripetal Acceleration

A body that moves in a circular path with a velocity whose magnitude is
constant is said to undergo uniform circular motion.

Although the velocity of a body in uniform circular motion is con-
stant in magnitude, its direction changes continually. The body is there-
fore accelerated. The direction of this centripetal acceleration is toward
the center of the circle in which the body moves, and its magnitude is

a
v

rc =

= ( )

2

2

Centripetal acceleration  
velocity of body

radius of circular path
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Note!

Because the acceleration is perpendicular to the
path followed by the body, the body’s velocity
changes only in direction, not in magnitude.

Centripetal Force
The inward force that must be applied to keep a body moving in a circle
is called centripetal force. Without centripetal force, circular motion can-
not occur. Since F = ma, the magnitude of the centripetal force on a body
in uniform circular motion is 

Solved Problem 6.1 A 1000-kg car rounds a turn of radius 30 m at a ve-
locity of 9 m/s. (a) How much centripetal force is required? (b) Where
does this force come from?

Solution.

(a)

(b) The centripetal force on a car making a turn on a level road is pro-
vided by the road acting via friction on the car’s tires.

Motion in a Vertical Circle

When a body moves in a vertical circle at the end of a string, the tension
T in the string varies with the body’s position. The centripetal force Fc
on the body at any point is the vector sum of T and the component of the
body’s weight w toward the center of the circle. At the top of the circle,
as in Figure 6-1(a), the weight w and the tension T both act toward the
center of the circle, and so

 kg  m / s

 m
 NF

mv

rc = = ( )( )
=

2 21000 9

30
2700

Centripetal force  = =F
mv

rc
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T = Fc − w

At the bottom of the circle, as in Figure 6-1(b), w acts away from the
center of the circle, and so

T = Fc + w

Solved Problem 6.2 A string 0.5 m long is used to whirl a 1-kg stone in
a vertical circle at a uniform velocity of 5 m/s. What is the tension of the
string (a) when the stone is at the top of the circle and (b) when the stone
is at the bottom of the circle?

Solution.
(a) The centripetal force needed to keep the stone moving at 5 m/s is

The weight of the stone is w = mg = (1 kg)(9.8 m/s2) = 9.8 N. At the top
of the circle,

T = Fc − w = 50 N − 9.8 N = 40.2 N

(b) At the bottom of the circle, 

T = Fc + w = 59.8 N
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Figure 6-1
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Gravitation

According to Newton’s law of universal gravitation, every body in the
universe attracts every other body with a force that is directly propor-
tional to each of their masses and inversely proportional to the square of
the distance between them. In equation form, 

where m1 and m2 are the masses of any two bodies, r is the distance be-
tween them, and G is a constant whose values in SI and British units are,
respectively,

SI units: G = 6.67 × 10−11 N � m2/kg2

British units: G = 3.34 × 10−8 lb � ft2/slug2

A spherical body behaves gravitationally as though its entire mass were
concentrated at its center.

Solved Problem 6.3 What gravitational force does a 1000-kg lead
sphere exert on an identical sphere 3 m away?

Solution.

This is less than the force that would result from blowing gently on one
of the spheres. Gravitational forces are usually significant only when at
least one of the bodies has a very large mass.

Satellite Motion

Gravitation provides the centripetal forces that keep the planets in their
orbits around the sun and the moon in its orbit around the earth. The same
is true for artificial satellites put into orbit around the earth. 
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Chapter 7

Rotational
Motion

In This Chapter:

✔ Angular Measure
✔ Angular Velocity
✔ Angular Acceleration
✔ Moment of Inertia
✔ Torque
✔ Rotational Energy and Work
✔ Angular Momentum

Angular Measure

In everyday life, angles are measured in degrees, where
360º equals a full turn. A more suitable unit for techni-
cal purposes is the radian (rad). If a circle is drawn
whose center is at the vertex of a particular angle (Fig-
ure 7-1), the angle q (Greek letter theta) in radians is
equal to the ratio between the arc s cut by the angle and
the radius r of the circle:

q =

=

s

r

Angle in radians  
arc length

radius
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Because the circumference of a circle of radius r is 2pr, there are 2p rad
in a complete revolution (rev). Hence

1 rev = 360� = 2p rad

and so,

1� = 0.01745 rad 1 rad = 57.30�

Angular Velocity

The angular velocity of a body describes how fast it is turning about an
axis. If a body turns through the angle q in the time t, its angular veloci-
ty w (Greek letter omega) is

Angular velocity is usually expressed in radians per second (rad/s), rev-
olutions per second (rev/s or rps), and revolutions per minute (rev/min
or rpm), where

1 rev/s = 2p rad/s = 6.28 rad/s

1 rev/min = = 0.105 rad/s
2

60

p
 rad/s

w
q=

=

t

Angular velocity  
angular displacement

time
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The linear velocity v of a particle that moves in a circle of radius r with
the uniform angular velocity w is given by

This formula is valid only when w is expressed in radian measure.

Angular Acceleration

A rotating body whose angular velocity changes from w0 to wf in the time
interval t has the angular acceleration a (Greek letter alpha) of

A positive value of a means that the angular velocity is increasing; a neg-
ative value means that it is decreasing. Only constant angular accelera-
tions are considered here.

The formulas relating the angular displacement, velocity, and accel-
eration of a rotating body under constant angular acceleration are analo-
gous to the formulas relating linear displacement, velocity, and accelera-
tion. If a body has the initial angular velocity w0, its angular velocity wf
after a time t during which its angular acceleration is a will be

and, in this time, it will have turned through an angular displacement of

A relationship that does not involve the time t directly is sometimes use-
ful:

w w aqf o
2 2 2= +

q w a= +ot t
1

2
2

w w af o t= +

a
w w

=
−

=

f o

t

Angular acceleration  
angular velocity change

time

v r=

= ( )( )
w

Linear velocity  angular velocity radius of circle
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Solved Problem 7.1 A phonograph turntable initially rotating at 3.5 rad/s
makes three complete turns before coming to a stop. (a) What is its an-
gular acceleration? (b) How much time does it take to come to a stop?

Solution.
(a) The angle in radians that corresponds to 3 rev is

q = (3 rev)(2p rad/rev) = 6p rad

From the formula, , we find

(b) Since wf = w0 + at, we have here

Moment of Inertia

The rotational analog of mass is a quantity called moment of inertia. The
greater the moment of inertia of a body, the greater its resistance to a
change in its angular velocity. 

You Need to Know 

The value of the moment of inertia I of a body about
a particular axis of rotation depends not only upon
the body’s mass but also upon how the mass is dis-
tributed about the axis.

Let us imagine a rigid body divided into a great many small particles
whose masses are m1, m2, m3, … and whose distances from the axis of
rotation are respectively r1, r2, r3, … (Figure 7-2).
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The moment of inertia of this body is given by

where the symbol S (Greek capital letter sigma) means “sum of” as be-
fore. The farther a particle is from the axis of rotation, the more it con-
tributes to the moment of inertia. The units of I are kg �m2 and slug � ft2.
Some examples of moments of inertia of bodies of mass M are shown in
Figure 7-3.

Torque

The torque t (Greek letter tau) exerted by a force on
a body is a measure of its effectiveness in turning the
body about a certain pivot point. The moment arm of
a force F about a pivot point O is the perpendicular
distance L between the line of action of the force and
O (Figure 7-4). The torque τ exerted by the force about O has the mag-
nitude

t =
= ( )( )

FL

Torque  force moment arm

I m r m r m r mr= + + + =1 1
2

2 2
2

3 3
2 2L Σ
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The torque exerted by a force is also known as the moment of the force.
A force whose line of action passes through O produces no torque about
O because its moment arm is zero.

Torque plays the same role in rotational motion that force plays in
linear motion. A net force F acting on a body of mass m causes it to un-
dergo the linear acceleration a in accordance with Newton’s second law
of motion F = ma. Similarly, a net torque t acting on a body of moment
of inertia I causes it to undergo the angular acceleration a (in rad/s2) in
accordance with the formula

Remember

In the SI system, the unit of torque is
newton � meter (N�m); in the British
system, it is the pound � foot (lb�ft).

Rotational Energy and Work 

The kinetic energy of a body of moment of inertia I whose angular ve-
locity is w (in rad/s) is

The work done by a constant torque τ that acts on a body while it ex-
periences the angular displacement q rad is

W =

= ( ) ( )
tq

Work  torque  angular displacement

KE I=
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1

2
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t a=
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48 APPLIED PHYSICS



The rate at which work is being done when a torque τ acts on a body
that rotates at the constant angular velocity w (rad/s) is

Angular Momentum 

The equivalent of linear momentum in rotational motion is angular mo-
mentum. The angular momentum L of a rotating body has the magnitude

The greater the angular momentum of a spinning object, such as a top,
the greater its tendency to spin.

Like linear momentum, angular momentum is a vector quantity with
direction as well as magnitude. The direction of the angular momentum
of a rotating body is given by the right-hand rule (Figure 7-5): 

L I=

= ( ) ( )
w

Angular momentum  moment of inertia  angular velocity

P =

= ( ) ( )
tw

Power  torque  angular velocity
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Figure 7-5

When the fingers of the right hand are curled in the direction of rotation,
the thumb points in the direction of L.

According to the principle of conservation of angular momentum,
the total angular momentum of a system of bodies remains constant in the
absence of a net torque regardless of what happens within the system. Be-
cause angular momentum is a vector quantity, its conservation implies
that the direction of the axis of rotation tends to remain unchanged.



Table 7.1 compares linear and angular quantities.
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Chapter 8

Equilibrium

In This Chapter:

✔ Translational Equilibrium
✔ Rotational Equilibrium
✔ Center of Gravity
✔ Finding a Center of Gravity

Translational Equilibrium

A body is in translational equilibrium when no net
force acts on it. Such a body is not accelerated, and it
remains either at rest or in motion at constant veloci-
ty along a straight line, whichever its initial state was. 

A body in translational equilibrium may have
forces acting on it, but they must be such that their
vector sum is zero. Thus the condition for the transla-
tional equilibrium of a body may be written

SF = 0

where the symbol S (Greek capital letter sigma) means “sum of” and F
refers to the various forces that act on the body.

The procedure for working out a problem that involves translational
equilibrium has three steps:

51

Copyright 2003 by The McGraw-Hill Companies, Inc. Click Here for Terms of Use.



1. Draw a diagram of the forces that act on the body. This is called
a free-body diagram.

2. Choose a set of coordinate axes and resolve the various forces
into their components along these axes.

3. Set the sum of the force components along each axis equal to
zero so that

Sum of x force components = SFx = 0
Sum of y force components = SFy = 0
Sum of z force components = SFz = 0

In this way, the vector equation SF = 0 is replaced by three scalar
equations. Then solve the resulting equations for the unknown quantities.

A proper choice of directions for the axes often simplifies the calcu-
lations. When all the forces lie in a plane, for instance, the coordinate sys-
tem can be chosen so that the x and y axes lie in the plane; then the two
equations SFx = 0 and SFy = 0 are enough to express the condition for
translational equilibrium.

Solved Problem 8.1 A 100-N box is suspended from two ropes that each
make an angle of 40� with the vertical. Find the tension in each rope.

Solution. The forces that act on the box are shown in the free-body dia-
gram of Figure 8-1(a). They are

T1 = tension in left-hand rope
T2 = tension in right-hand rope
w = weight of box, which acts downward

Since the forces all lie in a plane, we need only x and y axes. In Figure 
8-1(b), the forces are resolved into their x and y components, whose mag-
nitudes are as follows:

T T T T

T T T T

T T T T

T T T T

w

x

y

x

y

1 1 1 1 1

1 1 1 1 1

2 2 2 2 2

2 2 2 2 2
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40 0 766

40 0 643

40 0 766

100

= − = − = −

= = =

= = =

= = =

= −

sin sin .

cos cos .

sin sin .

cos cos .

q

q

q

q

o

o

o

o
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Because T1x and w are, respectively, in the −x and −y directions, both
have negative magnitudes.

Now we are ready for step 3. First we add the x components of the
forces and set the sum equal to zero. This yields

Evidently, the tensions in the two ropes are equal. Next we do the same
for the y components:

Since T1 = T2 = T,

T1 = T2 = 2T = 130.5 N

T = 65 N

The tension in each rope is 65 N.

ΣF T T w

T T

T

T

y y y= + + =

+ − =

+( ) =

+ = =

1 2

1 2

2

2
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. .
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Rotational Equilibrium

When the lines of action of the forces that act on a body in translational
equilibrium intersect at a common point, they have no tendency to turn
the body. Such forces are said to be concurrent. When the lines of action
do not intersect, the forces are nonconcurrent and exert a net torque that
acts to turn the body even though the resultant of the forces is zero (Fig-
ure 8-2).

A body is in rotational equilibrium when no net torque acts on it.
Such a body remains in its initial rotational state, either not spinning at
all or spinning at a constant rate. The condition for the rotational equi-
librium of a body may therefore be written

St = 0

where St refers to the sum of the torques acting on the body about any
point.

A torque that tends to cause a counterclockwise rotation when it is
viewed from a given direction is considered positive; a torque that tends
to cause a clockwise rotation is considered negative (Figure 8-3).

To investigate the rotational equilibrium of a body, any convenient
point may be used as the pivot point for calculating torques; if the sum of
the torques on a body in translational equilibrium is zero about some
point, it is zero about any other point.

54 APPLIED PHYSICS

Figure 8-2



Center of Gravity

The center of gravity of a body is that point at which the body’s entire
weight can be regarded as being concentrated. A body can be suspended
in any orientation from its center of gravity without tending to rotate. 

Note!

In analyzing the equilibrium of a body, its weight
can be considered as a downward force acting
from its center of gravity.

Solved Problem 8.2 (a) Under what circumstances is it necessary to
consider torques in analyzing an equilibrium situation? (b) About what
point should torques be calculated when this is necessary?
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Solution. (a) Torques must be considered when the various forces that
act on the body are nonconcurrent, that is, when their lines of action do
not intersect at a common point. (b) Torques may be calculated about any
point whatever for the purpose of determining the equilibrium of the
body. Hence it makes sense to use a point that minimizes the labor in-
volved, which usually is the point through which pass the maximum num-
ber of lines of action of the various forces; this is because a force whose
line of action passes through a point exerts no torque about that point.

Finding a Center of Gravity

The center of gravity (CG) of an object of regular
form and uniform composition is located at its geo-
metric center. In the case of a complex object, the way
to find its center of gravity is to consider it as a sys-
tem of separate particles and then find the balance
point of the system. An example is the massless rod of Figure 8-4, which
has three particles m1, m2, and m3 attached to it. 
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The CG of the system is at a distance X from the end of the rod such that
the torque exerted by a single particle of mass M = m1 + m2 + m3 at X
equals the sum of the torques exerted by the particles at their locations x1,
x2, and x3. Thus,

This formula can be extended to any number of particles. If the complex
object involves two or three dimensions rather than just one, the same
procedure is applied along two or three coordinate axes to find X and Y
or X, Y, and Z, which are the coordinates of the center of gravity.

m gx m gx m gx MgX m m m gX

X
m x m x m x

m m m

1 1 2 2 3 3 1 2 3

1 1 2 2 3 3

1 2 3

+ + = = + +( )
= + +

+ +
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Chapter 9

Simple
Harmonic
Motion

In This Chapter:

✔ Restoring Force
✔ Elastic Potential Energy
✔ Simple Harmonic Motion
✔ Period and Frequency
✔ Displacement, Velocity, 

and Acceleration
✔ Pendulums

Restoring Force

When an elastic object such as a spring is stretched or
compressed, a restoring force appears that tries to re-
turn the object to its normal length. It is this restoring
force that must be overcome by the applied force in
order to deform the object. From Hooke’s law, the
restoring force Fr is proportional to the displacement
s provided the elastic limit is not exceeded. Hence
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The minus sign is required because the restoring force acts in the oppo-
site direction to the displacement. The greater the value of the force con-
stant k, the greater the restoring force for a given displacement and the
greater the applied force F = ks needed to produce the displacement.

Elastic Potential Energy

Because work must be done by an applied force to stretch or compress an
object, the object has elastic potential energy, where

When a deformed elastic object is released, its elastic potential energy
turns into kinetic energy or into work done on something else.

Solved Problem 9.1 A force of 5 N compresses a spring by 4 cm. (a)
Find the force constant of the spring. (b) Find the elastic potential ener-
gy of the compressed spring.

Solution.

(a)

(b)

Simple Harmonic Motion

In periodic motion, a body repeats a certain motion indefinitely, always
returning to its starting point after a constant time interval and then start-
ing a new cycle. Simple harmonic motion is periodic motion that occurs
when the restoring force on a body displaced from an equilibrium posi-
tion is proportional to the displacement and in the opposite direction. A
mass m attached to a spring executes simple harmonic motion when the
spring is pulled out and released. The spring’s PE becomes KE as the

PE ks= = 



 =1

2

1

2
125 0 04 0 12 2( . . N/m)(  m)  J

k
F

s
= = =5

125
 N

0.04 m
 N/m

PE ks= 1

2
2

F ksr = −
= −Restoring force  force constant) (displacement)(
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mass begins to move, and the KE of the mass becomes PE again as its
momentum causes the spring to overshoot the equilibrium position and
become compressed (Figure 9-1).

The amplitude A of a body undergoing simple harmonic motion is
the maximum value of its displacement on either side of the equilibrium
position.

Period and Frequency

The period T of a body undergoing simple harmonic motion is the time
needed for one complete cycle; T is independent of the amplitude A. If
the acceleration of the body is a when its displacement is s,

T
s

a
= −

= −

2p

pPeriod  2
displacement

acceleration
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Equilibrium position

Mass is pulled out a dis-
tance s and released

At s� 0 all the energy is
kinetic

Spring is compressed and
all the energy is potential

The mass is at s = 0 and
moves in the opposite di-
rection



In the case of a body of mass m attached to a spring of force constant k,
Fr = −ks = ma, and so −s/a = m/k. Hence

stretched spring

The frequency f of a body undergoing simple harmonic motion is the
number of cycles per second it executes, so that

The unit of frequency is the hertz (Hz), where 1 Hz = 1 cycle/s.

Displacement, Velocity, and Acceleration

If t = 0 when a body undergoing simple harmonic motion is in its equi-
librium position of s = 0 and is moving in the direction of increasing s,
then at any time t thereafter its displacement is

s = A sin 2pft

Often, this formula is written

s = A sin wt

where w = 2pf is the angular frequency of the motion in radians per sec-
ond. Figure 9-2 is a graph of s versus t.

The velocity of the body at time t is

v = 2pfA cos 2pft = wA cos wt

When v is positive, the body is moving in the direction of increasing s;
when v is negative, it is moving in the direction of decreasing s. In terms
of the displacement s, the magnitude of the velocity is

v f A s= −2 2 2p

f
T

=

=

1

Frequency
1

period

T
m

k
= 2p
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The acceleration of the body at time t is

a = −4p2f 2A sin 2pft = − w2A sin wt

In terms of the displacement s, the acceleration is

a = 4p2f 2s

Pendulums

A simple pendulum has its entire mass concentrated at the end of the
string, as in Figure 9-3(a), and it undergoes simple harmonic motion pro-
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vided that the arc through which it travels is only a few degrees. The pe-
riod of a simple pendulum of length L is

simple pendulum

The physical pendulum of Figure 9-3(b) is an object of any kind
which is pivoted so that it can oscillate freely. If the moment of inertia of
the object about the pivot O is I, its mass is m, and the distance from its
center of gravity to the pivot is h, then its period is

physical pendulum

A torsion pendulum consists of an object suspended by a wire or thin
rod, as in Figure 9-3(c), which undergoes rotational simple harmonic os-
cillations. From Hooke’s law, the torque t needed to twist the object
through an angle q is

t = Kq

provided the elastic limit is not exceeded, where K is a constant that de-
pends on the material and dimensions of the wire. If I is the moment of
inertia of the object about its point of suspension, the period of the oscil-
lation is

torsion pendulum

Solved Problem 9.2 A lamp is suspended from a high ceiling with a cord
12 ft long. Find its period of oscillation.

Solution.

T
L

g
= = =2 2

12

32
3 85p p

 ft

 ft / s
 s2 .

T
I

K
= 2p

T
I

mgh
= 2p

T
L

g
= 2p
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Chapter 10

Waves and 
Sound

In This Chapter:

✔ Waves
✔ Wave Properties
✔ Logarithms
✔ Sound
✔ Doppler Effect

Waves

A wave is, in general, a disturbance that moves
through a medium. An exception is an electromagnet-
ic wave, which can travel through a vacuum. Exam-
ples are light and radio waves. A wave carries energy,
but there is no transport of matter. In a periodic wave,
pulses of the same kind follow one another in regular
succession.

In a transverse wave, the particles of the medium move back and
forth perpendicular to the direction of the wave. Waves that travel down
a stretched string when one end is shaken are transverse (Figure 10-1).

In a longitudinal wave, the particles of the medium move back and
forth in the same direction as the wave. Waves that travel down a coil
spring when one end is pulled out and released are longitudinal  (Figure
10-2). Sound waves are also longitudinal.
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Wave Properties

The period T of a wave is the time required for one complete wave to pass
a given point. The frequency f is the number of waves that pass that point
per second [Figure 10-3(a)], so

The wavelength l (Greek letter lambda) of a periodic wave is the dis-
tance between adjacent wave crests (Figure 10-3(b)). Frequency and
wavelength are related to wave velocity by

v f=

= ( ) ( )
l

Wave velocity  frequency  wavelength

f
T

=

=

1

Frequency
1

period
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The amplitude A of a wave is the maximum displacement of the par-
ticles of the medium through which the wave passes on either side of their
equilibrium position. In a transverse wave, the amplitude is half the dis-
tance between the top of a crest and the bottom of a trough (Figure 10-3).

The intensity I of a wave is the rate at which it transports energy per
unit area perpendicular to the direction of motion. The intensity of a me-
chanical wave (one that involves moving matter, in contrast to, say, an
electromagnetic wave) is proportional to f 2, the square of its frequency,
and, to A2 the square of its amplitude. 

Solved Problem 10.1 The velocity of sound in seawater is 1531 m/s.
Find the wavelength in seawater of a sound wave whose frequency is 256
Hz.

Solution.

Logarithms

Although logarithms have many other uses, their chief application in ap-
plied physics is in connection with the decibel, which is described in the
next section. Logarithms are discussed here only to the extent required
for this purpose. 

l = = =v

f

1531
5 98

 m / s

256 Hz
 m.
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The logarithm of a number N is the power n to which 10 must be
raised in order that 10n = N. That is,

N = 10n therefore log N = n

(Logarithms are not limited to a base of 10, but base-10 logarithms are
the most common and are all that are needed here.) For instance,

1000 = 103 therefore log 1000 = 3
0.01 = 10−2 therefore log 0.01 = −2

To find the logarithm of a number with a calculator, enter the value of the
number and press the LOG button.

The antilogarithm of a quantity n is the number N whose logarithm
it is. That is,

If log N = n then antilog n = N

To find the antilogarithm with a calculator, enter the value of the loga-
rithm and press the INV LOG button.

Because of the way logarithms are defined, the logarithm of a prod-
uct equals the sum of the logarithms of the factors:

log xy = log x + log y

Other useful relations are

Sound

Sound waves are longitudinal waves in which al-
ternate regions of compression and rarefaction
move away from a source. Sound waves can trav-
el through solids, liquids, and gases. The velocity
of sound is a constant for a given material at a giv-

log log log

log log

x

y
x y

x n xn

= −

=
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en pressure and temperature; in air at 1-atm pressure and 20 �C, it is 343
m/s = 1125 ft/s.

When sound waves spread out uniformly in space, their intensity de-
creases inversely with the square of the distance R from their source.
Thus, if the intensity of a certain sound is I1 at the distance R1, its inten-
sity I2 at the distance R2 can be found from 

The response of the human ear to sound intensity is not proportion-
al to the intensity, so doubling the actual intensity of a certain sound does
not lead to the sensation of a sound twice as loud but only of one that is
slightly louder than the original. For this reason, the decibel (dB) scale is
used for sound intensity.

An intensity of 10−12 W/m2, which is just audible, is given the val-
ue 0 dB; a sound 10 times more intense is given the value 10 dB; a sound
102 times more intense than 0 dB is given the value of 20 dB; a sound 103

times more intense than 0 dB is given the value of 30 dB; and so forth.
More formally, the intensity I dB of a sound wave whose intensity is I
W/m2 is given by

where I0 = 10−12 W/m2. Normal conversation might be 60 dB, city traf-
fic noise might be 90 dB, and a jet aircraft might produce as much as 140
dB (which produces damage to the ear) at a distance of 100 ft. Long-term
exposure to intensity levels of over 85 dB usually leads to permanent
hearing damage.

Solved Problem 10.2 How many times more intense is a 50-dB sound
than a 40-dB sound? Than a 20-dB sound?

Solution. Each interval of 10 dB represents a change in sound intensity
by a factor of 10. Hence a 50-dB sound is 10 times more intense than a
40-dB sound and 10 × 10 × 10 = 1000 times more intense than a 20-dB
sound.
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Doppler Effect

When there is relative motion between a source of waves and an observ-
er, the apparent frequency of the waves is different from their frequency
fS at the source. This change in frequency is called the Doppler effect.
When the source approaches the observer (or vice versa), the observed
frequency is higher; when the source recedes from the observer (or vice
versa), the observed frequency is lower. In the case of sound waves, the
frequency f that a listener hears is given by

sound

In this formula, v is the velocity of sound, vL is the velocity of the listen-
er (considered positive for motion toward the source and negative for mo-
tion away from the source), and vS is the velocity of the source (consid-
ered positive for motion toward the listener and negative for motion away
from the listener).

The Doppler effect in electromagnetic waves (light and radio waves
are examples) obeys the formula

electromagnetic waves

Here c is the velocity of light (3.00 × 108 m/s), and v is the relative ve-
locity between source and observer (considered positive if they are ap-
proaching and negative if they are receding). 

Interesting!

Astronomers use the Doppler effect in light to de-
termine the motion of stars; police use the effect in
radar waves to determine vehicle velocities.

f f
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Chapter 11

Electricity

In This Chapter:

✔ Electric Charge
✔ Atoms and Ions
✔ Coulomb’s Law
✔ Electric Field
✔ Electric Field Lines
✔ Potential Difference

Electric Charge

Electric charge, like mass, is one of the basic prop-
erties of certain elementary particles of which all
matter is composed. There are two kinds of charge,
positive charge and negative charge. The positive
charge in ordinary matter is carried by protons, the
negative charge by electrons. Charges of the same
sign repel each other, charges of opposite sign attract
each other.

The unit of charge is the coulomb (C). The charge of the proton is
+1.6 × 10−19 C, and the charge of the electron is −1.6 × 10−19 C. All
charges occur in multiples of ±e = ±1.6 × 10−19 C.

According to the principle of conservation of charge, the net electric
charge in an isolated system always remains constant. (Net charge means
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the total positive charge minus the total negative charge.) When matter is
created from energy, equal amounts of positive and negative charge al-
ways come into being, and when matter is converted to energy, equal
amounts of positive and negative charge disappear.

Atoms and Ions

An atom of any element consists of a small, positively charged nucleus
with a number of electrons some distance away. The nucleus is composed
of protons (charge +e, mass = 1.673 × 10−27 kg) and neutrons (uncharged,
mass = 1.675 × 10−27 kg). The number of protons in the nucleus is nor-
mally equal to the number of electrons around it, so the atom as a whole
is electrically neutral. The forces between atoms that hold them together
as solids and liquids are electric in origin. The mass of the electron is 9.1
× 10−31 kg.

Under certain circumstances, an atom may lose one or more elec-
trons and become a positive ion or it may gain one or more electrons and
become a negative ion. Many solids consist of positive and negative ions
rather than of atoms or molecules. An example is ordinary table salt,
which is made up of positive sodium ions (Na+) and negative chlorine
ions (Cl−).

Coulomb’s Law

The force one charge exerts on another is given by Coulomb’s law:

where q1 and q2 are the magnitudes of the charges, r is the distance be-
tween them, and k is a constant whose value in free space is

k = 9.0 × 109 N�m2/C2

The value of k in air is slightly greater. The constant k is sometimes re-
placed by 

k
o

= 1

4pe

Electric force  = =F k
q q

r
1 2

2
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where ε0, the permittivity of free space, has the value

ε0 = 8.85 × 10−12 C2/N�m2

(ε is the Greek letter epsilon.)

Solved Problem 11.1 Two charges, one of +5 × 10−7 C and the other 
−2 × 10−7 C, attract each other with a force of −100 N. How far apart are
they?

Solution. From Coulomb’s law, we have

Electric Field

An electric field is a region of space in which a charge would be acted
upon by an electric force. An electric field may be produced by one or
more charges, and it may be uniform or it may vary in magnitude and/or
direction from place to place.

If a charge q at a certain point is acted on by the force F, the electric
field E at that point is defined as the ratio between F and q:

Electric field is a vector quantity whose direction is that of the force on a
positive charge. The unit of E is the newton per coulomb (N/C) or, more
commonly, the equivalent unit volt per meter (V/m).

The advantage of knowing the electric field at some point is that we
can at once establish the force on any charge q placed there, which is

F E
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Electric Field Lines

Field lines are a means of describing a force field, such as an electric field,
by using imaginary lines to indicate the direction and magnitude of the
field. The direction of an electric field line at any point is the direction in
which a positive charge would move if placed there, and field lines are
drawn close together where the field is strong and far apart where the field
is weak (Figure 11-1). 

Solved Problem 11.2 The electric field in a certain neon sign is 5000 
V/m. What force does this field exert on a neon ion of mass 3.3 × 10−26

kg and charge +e?

Solution. The force on the neon ion is

Potential Difference

The potential difference V between two points in an electric field is the
amount of work needed to take a charge of 1 C from one of the points to
the other. Thus

V
W

q
=

=Potential difference  
work

charge

F qE eE= = = ×( ) ×( ) = ×− −1 6 10 5 10 8 1019 3 16.  C  V / m  N
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The unit of potential difference is the volt (V):

The potential difference between two points in a uniform electric
field E is equal to the product of E and the distance s between the points
in a direction parallel to E:

V = Es

Since an electric field is usually produced by applying a potential differ-
ence between two metal plates s apart, this equation is most useful in the
form

You Need to Know 

A battery uses chemical reactions to produce a po-
tential difference between its terminals; a genera-
tor uses electromagnetic induction for this pur-
pose.

Solved Problem 11.3 The potential difference between a certain thun-
dercloud and the ground is 7 × 106 V. Find the energy dissipated when a
charge of 50 C is transferred from the cloud to the ground in a lightning
stroke.

Solution. The energy is

W qV= = ( ) ×( ) = ×5 7 10 3 5 106 80 C  V  J.

E
V

s
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=Electric field  
potential difference

distance

1 volt  1 
joule

coulomb
=
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Chapter 12

Electric
Current

In This Chapter:

✔ Electric Current
✔ Ohm’s Law
✔ Resistivity
✔ Electric Power

Electric Current

A flow of charge from one place to another constitutes an electric cur-
rent. An electric circuit is a closed path in which an electric current car-
ries energy from a source (such as a battery or generator), to a load (such
as a motor or a lamp). In such a circuit (see Figure 12-1), electric current
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is assumed to go from the positive terminal of the battery (or generator)
through the circuit and back to the negative terminal of the battery. The
direction of the current is conventionally considered to be that in which
a positive charge would have to move to produce the same effects as the
actual current. Thus a current is always supposed to go from the positive
terminal of a battery to its negative terminal.

A conductor is a substance through which charge can flow easily, and
an insulator is one through which charge can flow only with great diffi-
culty. Metals, many liquids, and plasmas (gases whose molecules are
charged) are conductors; nonmetallic solids, certain liquids, and gases
whose molecules are electrically neutral are insulators. 

Note!

A number of substances, called semiconductors,
are intermediate in their ability to conduct charge.

Electric currents in metal wires always consist of flows of electrons;
such currents are assumed to occur in the direction opposite to that in
which the electrons move. Since a positive charge going one way is, for
most purposes, equivalent to a negative charge going the other way, this
assumption makes no practical difference. Both positive and negative
charges move when a current is present in a liquid or gaseous conductor.

If an amount of charge q passes a given point in a conductor in the
time interval t, the current in the conductor is

The unit of electric current is the ampere (A), where

1 ampere  1 
coulomb

second
=

I
q

t
=

=Electric current  
charge

time interval
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Ohm’s Law

For a current to exist in a conductor, there must be a
potential difference between its ends, just as a dif-
ference in height between source and outlet is neces-
sary for a river current to exist. In the case of a metal-
lic conductor, the current is proportional to the
applied potential difference: Doubling V causes I to double, tripling V
causes I to triple, and so forth. This relationship is known as Ohm’s law
and is expressed in the form

The quantity R is a constant for a given conductor and is called its resis-
tance. The unit of resistance is the ohm (W), where

The greater the resistance of a conductor, the less the current when a cer-
tain potential difference is applied.

Ohm’s law is not a physical principle but is an experimental rela-
tionship that most metals obey over a wide range of values of V and I.

Solved Problem 12.1 A 120-V electric heater draws a current of 25 A.
What is its resistance?

Solution.

Resistivity

The resistance of a conductor that obeys Ohm’s law is given by

R
L

A
= r

R
V

I
= = =120

4 8
 V

25 A
 A.

1 ohm  1 
volt

ampere
=

I
V

R
=

=Electric  current  
potential difference

resistance
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where L is the length of the conductor, A is the cross-sectional area, and
r (Greek letter rho), is the resistivity of the material of the conductor. In
SI, the unit of resistivity is the ohm-meter.

The resistivities of most materials vary with temperature. If R is the
resistance of a conductor at a particular temperature, then the change in
its resistance DR when the temperature changes by DT is approximately
proportional to both R and DT so that

DR = aRDT

The quantity a is the temperature coefficient of resistance of the materi-
al.

Electric Power

The rate at which work is done to maintain an electric current is given by
the product of the current I and the potential difference V:

When I is in amperes and V is in volts, P will be in watts.
If the conductor or device through which a current passes obeys

Ohm’s law, the power consumed may be expressed in the alternative
forms

Table 12.1 is a summary of the various formulas for potential difference
V, current I, resistance R, and power P that follow from Ohm’s law I =
V/R and from the power formula P = VI.

Solved Problem 12.2 The current through a 50-W resistance is 2 A. How
much power is dissipated as heat?

Solution. P I R= = ( ) ( ) =2 22 50 A    200 WΩ

P IV I R
V

R
= = =2

2

P IV=

= ( ) ( )Power  current  potential difference
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In This Chapter:

✔ Resistors in Series
✔ Resistors in Parallel
✔ EMF and Internal Resistance
✔ Kirchhoff ’s Rules

Resistors in Series

The equivalent resistance of a set of resistors depends on the way in which
they are connected as well as on their values. If the resistors are joined in
series, that is, consecutively (Figure 13-1), the equivalent resistance R of
the combination is the sum of the individual resistances:

series resistors

Resistors in Parallel

In a parallel set of resistors, the corresponding terminals of the resistors
are connected (Figure 13-2). The reciprocal 1/R of the equivalent resis-
tance of the combination is the sum of the reciprocals of the individual
resistances:

R R R R= + + +1 2 3 L

80

Chapter 13

Direct-Current
Circuits

Copyright 2003 by The McGraw-Hill Companies, Inc. Click Here for Terms of Use.



CHAPTER 13: Direct-Current Circuits 81

parallel resistors

If only two resistors are connected in parallel,

and so

Solved Problem 13.1 Find the equivalent resistance of the circuit shown
in Figure 13-3(a).

Solution. Figure 13-3(b) shows how the original circuit is decomposed
into its series and parallel parts, each of which is treated in turn. The
equivalent resistance of R1 and R2 is

This equivalent resistance is in series with R3, and so

′′ = ′ + = + =R R R3 5   3   8 Ω Ω Ω

′ =
+

= ( )( )
+

=R
R R

R R
1 2

1 2

10 10

10 10
5

    

Ω Ω
Ω Ω

Ω

R
R R

R R
=

+
1 2

1 2

1 1 1

1 2

1 2

1 2R R R

R R

R R
= + = +

1 1 1 1

1 2 3R R R R
= + + +L

Figure 13-1

Figure 13-2 
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Finally R�, is in parallel with R4; hence the equivalent resistance of the
entire circuit is

R
R R

R R
= ′′

′′ +
= ( )( )

+
=4

4

8 12

8 12
4 8

    

Ω Ω
Ω Ω

Ω.

Figure 13-3



CHAPTER 13: Direct-Current Circuits 83

EMF and Internal Resistance

The work done per coulomb on the charge passing through a battery, gen-
erator, or other source of electric energy is called the electromotive force,
or emf, of the source. The emf is equal to the potential difference across
the terminals of the source when no current flows. When a current I flows,
this potential difference is less than the emf because of the internal re-
sistance of the source.  If the internal resistance is r, then a potential drop
of Ir occurs within the source. The terminal voltage V across a source of
emf Ve whose internal resistance is r when it provides a current of I is
therefore

When a battery or generator of emf Ve is connected to an external re-
sistance R, the total resistance in the circuit is R + r, and the current that
flows is

Kirchhoff ’s Rules

The current that flows in each branch of a complex circuit can be found
by applying Kirchhoff ’s rules to the circuit. The first rule applies to junc-
tions of three or more wires (Figure 13-4) and is a consequence of con-
servation of charge. The second rule applies to loops, which are closed
conducting paths in the circuit, and is a consequence of conservation of
energy. The rules are:

1. The sum of the currents that flow into a junction is equal to the
sum of the currents that flow out of the junction.

2. The sum of the emfs around a loop is equal to the sum of the IR
potential drops around the loop.

I
V

R r
e=
+

=
+

Current
emf

external resistance  internal resistance

V V Ire= −
= −Terminal voltage  emf  potential drop due to internal resistance
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The procedure for applying Kirchhoff’s rules is as follows:

1. Choose a direction for the current in each branch of the circuit,
as in Figure 13-4. (A branch is a section of a circuit between two
junctions.) If the choice is correct, the current will turn out to be
positive. If not, the current will turn out to be negative, which
means that the actual current is in the opposite direction. The
current is the same in all the resistors and emf sources in a giv-
en branch. Of course, the currents will usually be different in the
different branches.

2. Apply the first rule to the currents at the various junctions. This
gives as many equations as the number of junctions. However,
one of these equations is always a combination of the others and
so gives no new information. (If there are only two junction
equations, they will be the same.) Thus, the number of usable
junction equations is equal to one less than the number of junc-
tions.

3. Apply the second rule to the emfs and IR drops in the loops. In
going around a loop (which can be done either clockwise or
counterclockwise), an emf is considered positive if the negative
terminal of its source is met first. If the positive terminal is met
first, the emf is considered negative. An IR drop is considered
positive if the current in the resistor R is in the same direction as
the path being followed. If the current direction is opposite to
the path, the IR drop is considered negative.

Figure 13-4
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In the case of the circuit shown in Figure 13-4, Kirchhoff’s first rule,
applied to either junction a or junction b, yields

The second rule applied to loop 1, shown in Figure 13-5(a), and pro-
ceeding counterclockwise, yields

The rule applied to loop 2, shown in Figure 13-5(b), and again proceed-
ing counterclockwise, yields

There is also a third loop, namely, the outside one shown in Figure 
13-5(c), which must similarly obey Kirchhoff’s second rule. For the sake
of variety, we now proceed clockwise and obtain

− + = − −V V I R I Re e, ,1 2 3 3 1 1

− = − +V I R I Re,2 2 2 3 3

V I R I Re,1 1 1 2 2= +

I I I1 2 3= +

Figure 13-5
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Chapter 14

Capacitance 

In This Chapter:

✔ Capacitance
✔ Parallel-Plate Capacitor
✔ Capacitors in Combination
✔ Energy of a Charged Capacitor
✔ Charging a Capacitor
✔ Discharging a Capacitor

Capacitance

A capacitor is a system that stores energy in the form
of an electric field. In its simplest form, a capacitor
consists of a pair of parallel metal plates separated
by air or other insulating material.

The potential difference V between the plates of
a capacitor is directly proportional to the charge Q on either of them, so
the ratio Q/V is always the same for a particular capacitor. This ratio is
called the capacitance C of the capacitor:

C
Q

V
=

=Capacitance
charge on either plate

potential difference between plates
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The unit of capacitance is the farad (F), where 1 farad = 1 coulomb/
volt. Since the farad is too large for practical purposes, the microfarad
and picofarad are commonly used, where

A charge of 10−6 C on each plate of 1-mF capacitor will produce a
potential difference of V = Q/C = 1 V between the plates.

Parallel-Plate Capacitor

A capacitor that consists of parallel plates each of area A separated by the
distance d has a capacitance of

The constant ε0 is the permittivity of free space; its value is 

The quantity K is the dielectric constant of the material between the ca-
pacitor plates; the greater K is, the more effective the material is in di-
minishing an electric field. 

Note!

For free space, K = 1; for air, K = 1.0006; a typical
value for glass is K = 6; and for water, K = 80.

Capacitors in Combination 

The equivalent capacitance of a set of connected capacitors is the capac-
itance of the single capacitor that can replace the set without changing the

eo = × ⋅( ) = ×− −8 85 10 8 85 1012 12. / . C N m  F/m2 2

C K
A

do= e

1 microfarad  1 F  10  F

1 picofarad  1 F  10  F

6

12

= =

= =

−

−

m

p
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properties of any circuit it is part of. The equivalent capacitance of a set
of capacitors joined in series (Figure 14-1) is

capacitors in series

If there are only two capacitors in series,

and so

In a parallel set of capacitors (Figure 14-2),

capacitors in parallel

Solved Problem 14.1 Find the equivalent capacitance of three capaci-
tors whose capacitances are 1, 2, and 3 mF that are connected in: (a) se-
ries and (b) parallel.

Solution.
(a) In series, the equivalent capacitance can be found by: 

1 1 1 1 1

1

1

2

1

3

11

61 2 3C C C C F F F F
= + + = + + =

    m m m m

C C C C= + + +1 2 3 L

C
C C

C C
=

+
1 2

1 2

1 1 1

1 2

1 2

1 2C C C

C C

C C
= + = +

1 1 1 1

1 2 3C C C C
= + + +L

Figure 14-1

Figure 14-2 
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(b) In parallel, the equivalent capacitance can be found by:

C = C1 + C2 + C3 = 1 mF + 2 mF + 3 mF = 6 mF

Energy of a Charged Capacitor

To produce the electric field in a charged capacitor, work must be done
to separate the positive and negative charges. This work is stored as elec-
tric potential energy in the capacitor. The potential energy W of a capac-
itor of capacitance C whose charge is Q and whose potential difference
is V given by

Charging a Capacitor

When a capacitor is being charged in a circuit such as that of Figure 
14-3, at any moment the voltage Q/C across it is in the opposite direction
to the battery voltage V and thus tends to oppose the flow of additional
charge. For this reason, a capacitor does not acquire its final charge the
instant it is connected to a battery or other source of emf. The net poten-
tial difference when the charge on the capacitor is Q is V − (Q/C), and the
current is then

As Q increases, its rate of increase I = ∆Q/∆t decreases. Figure 14-4
shows how Q, measured in percent of final charge, varies with time when
a capacitor is being charged; the switch of Figure 14-3 is closed at t = 0.

The product RC of the resistance R in the circuit and the capacitance
C governs the rate at which the capacitor reaches its ultimate charge of
Q0 = CV. The product RC is called the time constant T of the circuit. Af-

I
Q

t

V Q C

R
= =

− ( )∆
∆

/

W QV CV
Q

C
= = =







1

2

1

2

1

2
2

2

C = =6

11
 F  0.545 Fm m
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ter a time equal to T, the charge on the capacitor is 63 percent of its final
value.

The formula that governs the growth of charge in the circuit of Fig-
ure 14-3 is

where Qo is the final charge CV and T is the time constant RC. Figure 
14-4 is a graph of that formula. It is easy to see why Q reaches 63 percent
of Qo in time T. When t = T, t/T = 1 and

Discharging a Capacitor

When a charged capacitor is discharged through a resistance, as in Fig-
ure 14-5, the decrease in charge is governed by the formula

where again T = RC is the time constant. The charge will fall to 37 per-
cent of its original value after time T (Figure 14-6). The smaller the time
constant T, the more rapidly a capacitor can be charged or discharged.

Q Qoe T= −t /

Q Qo e T Qo e Qo e

Qo Qo

= − −( ) = − −( ) = −





= −( ) =

1 1 1 1
1

1 0 37 0 63

t /

. .

Q Qo e T= − −( )1 t /

Figure 14-3



CHAPTER 14: Capacitance 91

Solved Problem 14.2 A 20-mF capacitor is connected to a 45-V battery
through a circuit whose resistance is 2000 W. (a) What is the final charge
on the capacitor? (b) How long does it take for the charge to reach 63 per-
cent of its final value?

Solution. (a)

(b) t RC= = ( ) ×( ) =−2 20 10 0 046000  F  sΩ .

Q CV= = ×( )( ) = ×− −20 10 45 9 106 4 F  V  C

Figure 14-5

Figure 14-4
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Figure 14-6



In This Chapter:

✔ Nature of Magnetism
✔ Magnetic Field
✔ Magnetic Field of a Straight Current
✔ Magnetic Field of a Current Loop
✔ Earth’s Magnetic Field 
✔ Magnetic Force on a Moving Charge 
✔ Magnetic Force on a Current 
✔ Force Between Two Currents 
✔ Ferromagnetism
✔ Magnetic Intensity 

Nature of Magnetism

Two electric charges at rest exert forces on each other
according to Coulomb’s law. When the charges are in
motion, the forces are different, and it is customary to
attribute the differences to magnetic forces that occur
between moving charges in addition to the electric
forces between them. In this interpretation, the total

93

Chapter 15

Magnetism 
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force on a charge Q at a certain time and place can be divided into two
parts: an electric force that depends only on the value of Q and a mag-
netic force that depends on the velocity v of the charge as well as on Q.

In reality, there is only a single interaction between charges, the elec-
tromagnetic interaction. The theory of relativity provides the link be-
tween electric and magnetic forces: Just as the mass of an object moving
with respect to an observer is greater than when it is at rest, so the elec-
tric force between two charges appears altered to an observer when the
charges are moving with respect to the observer. Magnetism is not dis-
tinct from electricity in the way that, for example, gravitation is. 

You Need to Know 

Despite the unity of the electromagnetic interac-
tion, it is convenient for many purposes to treat
electric and magnetic effects separately. 

Magnetic Field

A magnetic field B is present wherever a magnetic force acts on a mov-
ing charge. The direction of B at a certain place is that along which a
charge can move without experiencing a magnetic force; along any oth-
er direction that the charge would be acted on by such a force. The mag-
nitude of B is equal numerically to the force on a charge of 1 C moving
at 1 m/s perpendicular to B.

The unit of magnetic field is the tesla (T), where

The gauss (G), equal to 10−4 T, is another unit of magnetic field some-
times used.

1 tesla  1
newton

ampere¯meter

weber

meter
= =

( )
1 2
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Magnetic Field of a Straight Current

The magnetic field a distance s from a long, straight current I has the mag-
nitude

straight current

where m is the permeability of the medium in which the magnetic field
exists. The permeability of free space m0 has the value

The field lines of the magnetic field around a straight current are in
the form of concentric circles around the current. To find the direction of
B, place the thumb of the right hand in the direction of the current; the
curled fingers of that hand then point in the direction of B (Figure 15-1).

Magnetic Field of a Current Loop

The magnetic field at the center of a current loop of radius r has the mag-
nitude

current loop

The field lines of B are perpendicular to the plane of the loop, as shown
in Figure 15-2(a). To find the direction of B, grasp the loop so the curled
fingers of the right hand point in the direction of the current; the thumb
of that hand then points in the direction of B [Figure 15-2(b)].

B
I

r
= 










m

2

m po = × ⋅ = × ⋅− −4 10 7  T m/A  1.257  10   T m/A6

B
s

= 










m

p2

1

Figure 15-1
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A solenoid is a coil consisting of many loops of wire. If the turns are
close together and the solenoid is long compared with its diameter, the
magnetic field inside it is uniform and parallel to the axis with magnitude

separate solenoid

In this formula, N is the number of turns, L is the length of the solenoid,
and I is the current. The direction of B is as shown in Figure 15-3.

B
N

L
I= m

Figure 15-2 

Figure 15-3
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Earth’s Magnetic Field

The earth has a magnetic field that arises from electric currents in its liq-
uid iron core. The field is like that which would be produced by a current
loop centered a few hundred miles from the earth’s center whose plane is
tilted by 11� from the plane of the equator (Figure 15-4). The geomag-
netic poles are the points where the magnetic axis passes through the
earth’s surface. The magnitude of the earth’s magnetic field varies from
place to place; a typical sea-level value is 

3 × 10−5 T.

Solved Problem 15.1 In what ways are electric and magnetic fields sim-
ilar? In what ways are they different?

Solution.

Similarities: Both fields originate in electric charges, and both fields
can exert forces on electric charges.

Differences: All electric charges give rise to electric fields, but only a
charge in motion relative to an observer gives rise to a magnetic field.

Figure 15-4



98 APPLIED PHYSICS

Electric fields exert forces on all charges, but magnetic fields exert forces
only on moving charges.

Magnetic Force on a Moving Charge

The magnetic force on a moving charge Q in a magnetic field varies with
the relative directions of v and B. When v is parallel to B, F = 0; when v
is perpendicular to B, F has its maximum value of

F = QvB v ⊥ B

The direction of F in the case of a positive charge is given by the right-
hand rule, shown in Figure 15-5; F is in the opposite direction when the
charge is negative.

Magnetic Force on a Current

Since a current consists of moving charges, a current-carrying wire will
experience no force when parallel to a magnetic field B and maximum
force when perpendicular to B. In the latter case, F has the value

F = ILB I ⊥ B

where I is the current and L is the length of wire in the magnetic field. The
direction of the force is as shown in Figure 15-6.

Figure 15-5
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Note!

Owing to the different forces exerted on each of its
sides, a current loop in a magnetic field always
tends to rotate so that its plane is perpendicular to
B. This effect underlies the operation of all electric
motors.

Force Between Two Currents

Two parallel electric currents exert magnetic forces on each other (Fig-
ure 15-7). If the currents are in the same direction, the forces are attrac-
tive; if the currents are in opposite directions, the forces are repulsive.
The force per unit length F/L on each current depends on currents I1 and
I2 and their separation s:

parallel currents

Solved Problem 15.2 A positive charge is moving virtually upward
when it enters a magnetic field directed to the north. In what direction is
the force on the charge?

F

L

I I

s
o= 










m

p2
1 2

Figure 15-6



Solution. To apply the right-hand rule here, the fingers of the right hand
are pointed north and the thumb of that hand is pointed upward. The palm
of the hand faces west, which is therefore the direction of the force on the
charge.

Ferromagnetism

The magnetic field produced by a current is altered by the presence of a
substance of any kind. Usually the change, which may be an increase or
a decrease in B, is very small, but in certain cases, there is an increase in
B by hundreds or thousands of times. Substances that have the latter ef-
fect are called ferromagnetic; iron and iron alloys are familiar examples. 

Remember

An electromagnet is a solenoid with
a ferromagnetic core to increase its
magnetic field.

Ferromagnetism is a consequence of the magnetic properties of the
electrons that all atoms contain. An electron behaves in some respects as
though it is a spinning charged sphere, and it is therefore magnetically
equivalent to a tiny current loop. In most substances, the magnetic fields
of the atomic electrons cancel, but in ferromagnetic substances, the can-
cellation is not complete and each atom has a certain magnetic field of its
own. The atomic magnetic fields align themselves in groups called do-
mains with an external magnetic field to produce a much stronger total B.
When the external field is removed, the atomic magnetic fields may re-
main aligned to produce a permanent magnet. The field of a bar magnet
has the same form as that of a solenoid because both fields are due to par-
allel current loops (Figure 15-7).

Magnetic Intensity

A substance that decreases the magnetic field of a current is called dia-
magnetic; it has a permeability m that is less than m0. Copper and water
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are examples. A substance that increases the magnetic field of a current
by a small amount is called paramagnetic; it has a permeability m that is
greater than m0. Aluminum is an example. Ferromagnetic substances have
permeabilities hundreds or thousands of times greater than m0.

Note!

Diamagnetic substances are repelled by magnets;
paramagnetic and ferromagnetic ones are attract-
ed by magnets.

Because different substances have different magnetic properties, it is
useful to define a quantity called magnetic intensity H, which is inde-
pendent of the medium in which a magnetic field is located. The mag-
netic intensity in a place where the magnetic field is B and the perme-
ability is m is given by

The unit of H is the ampere per meter. Magnetic intensity is sometimes
called magnetizing force or magnetizing field.

The permeability of a ferromagnetic material at a given value of H
varies both with H and with the previous degree of magnetization of the
material. The latter effect is known as hysteresis.

H
B

Magnetic intensity  
magnetic field

permeability of medium

=

=

m

Figure 15-7
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Chapter 16

Electro-
magnetic
Induction

In This Chapter:

✔ Electromagnetic Induction
✔ Faraday’s Law
✔ Lenz’s Law
✔ The Transformer
✔ Self-Inductance
✔ Inductors in Combination 
✔ Energy of a Current-Carrying

Inductor

Electromagnetic Induction

A current is produced in a conductor whenever the cur-
rent cuts across magnetic field lines, a phenomenon
known as electromagnetic induction. If the motion is
parallel to the field lines of force, there is no effect.
Electromagnetic induction originates in the force a
magnetic field exerts on a moving charge. When a wire
moves across a magnetic field, the electrons it contains
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experience sideways forces that push them along the wire to cause a cur-
rent. It is not even necessary for there to be relative motion of a wire and
a source of magnetic field, since a magnetic field whose strength is chang-
ing has moving field lines associated with it and a current will be induced
in a conductor that is in the path of these moving field lines.

When a straight conductor of length l is moving across a magnetic
field B with the velocity v, the emf induced in the conductor is given by

Induced emf = Ve = Blv

when B, v, and the conductor are all perpendicular to one another.

Solved Problem 16.1 The vertical component of the earth’s magnetic
field in a certain region is 3 × 10−5 T. What is the potential difference be-
tween the rear wheels of a car, which are 1.5 m apart, when the car’s ve-
locity is 20 m/s?

Solution. The real axle of the car may be considered as a rod of 1.5 m
long-moving perpendicular to the magnetic field’s vertical component.
The potential difference between the wheels is therefore

Faraday’s Law

Figure 16-1 shows a coil (called a solenoid) of N turns that encloses an
area A. The axis of the coil is parallel to a magnetic field B. According to
Faraday’s law of electromagnetic induction, the emf induced in the coil
when the product BA changes by D(BA) in the time Dt is given by

The quantity BA is called the magnetic flux enclosed by the coil and is de-
noted by the symbol F (Greek capital letter phi):

Φ =

= ( ) ( )
BA

Magnetic flux  magnetic field  cross¯sectional area

Induced emf  = = − ( )
V N

BA

te
∆

∆

V Blve = = × = × =− −(3 10 9 105 4 T)(1.5m)(20 m/s)  V  0.9 mV
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The unit of magnetic flux is the weber (Wb), where 1 Wb = 1 T�m2. Thus,
Faraday’s law can be written

Lenz’s Law

The minus sign in Faraday’s law is a consequence of Lenz’s law:
An induced current is always in such a direction that its own magnetic
field acts to oppose the effect that created it.

For example, if B is decreasing in magnitude in the situation of Fig-
ure 16-1, the induced current in the coil will be counterclockwise in or-
der that its own magnetic field will add to B and so reduce the rate at
which B is decreasing. Similarly, if B is increasing, the induced current
in the coil will be clockwise so that its own magnetic field will subtract
from B and thus reduce the rate at which B is increasing.

The Transformer

A transformer consists of two coils of wire, usually wound on an iron
core. When an alternating current is passed through one of the windings,
the changing magnetic field it gives rise to induces an alternating current
in the other winding. The potential difference per turn is the same in both

V N
te = − ∆

∆
Φ

Figure 16-1



primary and secondary windings, so the ratio of turns in the winding de-
termines the ratio of voltages across them: 

Since the power I1V1 going into a transformer must equal the power
I2V2 going out, where I1 and I2 are the primary and secondary currents,
respectively, the ratio of currents is inversely proportional to the ratio of
turns:

Self-Inductance

When the current in a circuit changes, the magnetic field enclosed by the
circuit also changes, and the resulting change in flux leads to a self-in-
duced emf of

Here DI/Dt is the rate of change of the current, and L is a property of 
the circuit called its self-inductance, or, more commonly, its inductance.
The minus sign indicates that the direction of Ve is such as to oppose the
change in current DI that caused it.

The unit of inductance is the henry (H). A circuit or circuit element
that has an inductance of 1 H will have a self-induced emf of 1 V when
the current through it changes at the rate of 1 A/s. Because the henry is a
rather large unit, the millihenry and microhenry are often used, where

1 millihenry = 1 mH = 10−3 H
1 microhenry = 1 mH = 10−6 H

Self¯induced emf  = = −V L
I

te
∆
∆

I

I

N

N
1

2

2

1

=

=Primary current

Secondary current

Secondary turns

Primary turns

V

V

N

N
1

2

1

2

=

=Primary voltage

Secondary voltage

Primary turns

Secondary turns
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A circuit element with inductance is called an inductor. A solenoid is an
example of an inductor. The inductance of a solenoid is

where m is the permeability of the core material, N is the number of turns,
A is the cross-sectional area, and l is the length of the solenoid.

Inductors in Combination

When two or more inductors are sufficiently far apart for them not to in-
teract electromagnetically, their equivalent inductances when they are
connected in series and in parallel are as follows:

inductors in series

inductors in parallel

Connecting coils in parallel reduces the total inductance to less than that
of any of the individual coils. This is rarely done because coils are rela-
tively large and expensive compared with other electronic components;
a coil of the required smaller inductance would nor-
mally be used in the first place.

Because the magnetic field of a current-carrying
coil extends beyond the inductor itself, the total in-
ductance of two or more connected coils will be
changed if they are close to one another. Depending
on how the coils are arranged, the total inductance may be larger or small-
er than if the coils were farther apart. This effect is called mutual induc-
tance and is not considered in the above formula.

Solved Problem 16.2 Find the equivalent inductances of a 5- and an 
8-mH inductor when they are connected in (a) series and (b) parallel.

Solution.

(a) L L L= + = + =1 2 5 mH  8 mH  13 mH

1 1 1 1

1 2 3L L L L
= + + +L

L L L L= + + +1 2 3 L

L
N A

l
= m 2



(b)

Energy of a Current-Carrying Inductor

Because a self-induced emf opposes any change in an inductor, work has
to be done against this emf to establish a current in the inductor. This work
is stored as magnetic potential energy. If L is the inductance of an induc-
tor, its potential energy when it carries the current I is

This energy powers the self-induced emf that opposes any decrease in the
current through the inductor.

W LI= 1

2
2

1 1 1 1

5

1

81 2L L L
= + = + =

 mH  mH
        L  3.08 mH
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Chapter 17

Light

In This Chapter:

✔ Electromagnetic Waves
✔ Luminous Intensity and Flux
✔ Illumination
✔ Reflection of Light
✔ Refraction of Light 
✔ Total Internal Reflection 
✔ Apparent Depth 

Electromagnetic Waves

Electromagnetic waves consist of coupled electric and magnetic fields
that vary periodically as they move through space. The electric and mag-
netic fields are perpendicular to each other and to the direction in which
the waves travel (Figure 17-1), so the waves are transverse, and the vari-
ations in E and B occur simultaneously. Electromagnetic waves transport
energy and require no material medium for their passage. Radio waves,
light waves, X-rays, and gamma rays are examples of electromagnetic
waves, and they differ only in frequency. 

Copyright 2003 by The McGraw-Hill Companies, Inc. Click Here for Terms of Use.
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Note!

The color sensation produced by light waves de-
pends on their frequency, with red light having the
lowest visible frequencies and violet light the high-
est. White light contains light waves of all visible
frequencies.

Electromagnetic waves are generated by accelerated electric charges,
usually electrons. Electrons oscillating back and forth in an antenna give
off radio waves, for instance, and accelerated electrons in atoms give off
light waves.

In free space, all electromagnetic waves have the velocity of light
which is

Velocity of light = c = 3.00 × 108 m/s = 186,000 mi/s

Luminous Intensity and Flux

The brightness of a light source is called its luminous intensity I, whose
unit is the candela (cd).The intensity of a light source is sometimes re-
ferred to as its candlepower.

Figure 17-1
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The amount of visible light that falls on a given surface is called lu-
minous flux F, whose unit is the lumen (lm). One lumen is equal to the lu-
minous flux which falls on each 1 m2 of a sphere 1 m in radius when a 
1-cd isotropic light source (one that radiates equally in all directions) is
at the center of the sphere. Since the surface area of a sphere of radius r
is 4pr2, a sphere whose radius is 1 m has 4p m2 of area, and the total lu-
minous flux emitted by a 1-cd source is therefore 4p lm. Thus the lumi-
nous flux emitted by an isotropic light source of intensity I is given by

The above formula does not apply to a light source that radiates dif-
ferent fluxes in different directions. In such a situation, the concept of sol-
id angle is needed. A solid angle is the counterpart in three dimensions of
an ordinary angle in two dimensions. The solid angle W (Greek capital
letter omega) subtended by area A on the surface of a sphere of radius r
is given by

The unit of solid angle is the steradian (sr); see Figure 17-2. Like the de-
gree and the radian, the steradian is a dimensionless ratio that disappears
in calculations. 

The general definition of luminous flux is

Since the total area of a sphere is 4pr2, the total solid angle it subtends is
(4pr2/r2) sr = 4p sr. This definition of F thus gives F = 4pI for the total
flux emitted by an isotropic source. 

F I=

= ( )( )
Ω

Luminous flux  luminous intensity solid angle

Ω =

=
( )

A

r2

2Solid angle  
area on surface of sphere

radius of sphere

F I=

= ( )( )
4p

pLuminous flux  4 luminous intensity
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You Need to Know 

The luminous flux of a 1-cd source gives off per
steradian therefore equals 1 lm, and 1 cd equals 1
lm/sr. 

The luminous efficiency of a light source is the amount of luminous
flux it radiates per watt of input power. The luminous efficiency of ordi-
nary tungsten-filament lamps increases with their power, because the
higher the power of such a lamp, the greater its temperature and the more
of its radiation is in the visible part of the spectrum. The efficiencies of
such lamps range from about 8 lm/W for a 10-W lamp to 22 lm/W for a
1000-W lamp. Fluorescent lamps have efficiencies from 40 to 75 lm/W.

Figure 17-2
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Illumination

The illumination (or illuminance) E of a surface is the luminous flux per
unit area that reaches the surface:

In SI, the unit of illumination is the lumen per square meter, or lux (lx);
in the British system, it is the lumen per square foot, or footcandle (fc)
(Table 17-1).

The illumination on a surface a distance R away from an isotropic
source of light of intensity I is

where θ is the angle between the direction of the light and the normal to
the surface (Figure 17-3). Thus, the illumination from such a source
varies inversely as R2, just as in the case of sound waves; doubling the
distance means, reducing the illumination to ¹⁄₄ its former value. For light
perpendicularly incident on a surface, θ = 0 and cos θ = 1, so in this sit-
uation, E = I/R2.

E
I

R
= cosq

2

E
F

A
=

=Illumination
luminous flux

area

Table 17.1
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Solved Problem 17.1 A 10-W fluorescent lamp has a luminous intensi-
ty of 35 cd. Find (a) the luminous flux it emits and (b) its luminous effi-
ciency.

Solution. (a)

(b)

Reflection of Light

When a beam of light is reflected from a smooth, plane surface, the an-
gle of reflection equals the angle of incidence (Figure 17-4). The image
of an object in a plane mirror has the same size and shape as the object
but with left and right reversed; the image is the same distance behind the
mirror as the object is in front of it.

Luminous efficiency  
440 lm

10 W
  44 lm / W= = =F

P

F I= = ( )( ) =4 4 35p p  cd   440 lm

Figure 17-3

Figure 17-4
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Solved Problem 17.2 A woman 170 cm tall wishes to buy a mirror in
which she can see herself at full length. What is the minimum height of
such a mirror? How far from the mirror should she stand? 

Solution. Since the angle of reflection equals the angle of incidence, the
mirror should be half her height (85 cm) and placed so its top is level with
the middle of her forehead (Figure 17-5). The distance between the mir-
ror and the woman does not matter.

Refraction of Light

When a beam of light passes obliquely from one medium to another in
which its velocity is different, its direction changes (Figure 17-6). The

Figure 17-5

Figure 17-6



greater the ratio between the two velocities, the greater the deflection. If
the light goes from the medium of high velocity to the one of low veloc-
ity, it is bent toward the normal to the surface; if the light goes the other
way, it is bent away from the normal. Light moving along the normal is
not deflected. 

The index of refraction of a transparent medium is the ratio between
the velocity of light in free space c and its velocity in the medium v:

The greater its index of refraction, the more a beam of light is deflected
on entering a medium from air. The index of refraction of air is about
1.0003, so for most purposes, it can be considered equal to 1.

According to Snell’s law, the angles of incidence i and refraction r
shown in Figure 17-6 are related by the formula

where v1 and n1 are, respectively, the velocity of light and index of re-
fraction of the first medium and v2 and n2 are the corresponding quanti-
ties in the second medium. Snell’s law is often written

In general, the index of refraction of a medium increases with in-
creasing frequency of the light. For this reason, a beam of white light is
separated into its component frequencies, each of which produces the
sensation of a particular color, when it passes through an object whose
sides are not parallel, for instance, a glass prism. The resulting band of
color is called a spectrum.

Solved Problem 17.3 Why is a beam of white light that passes perpen-
dicularly through a flat pane of glass not dispersed into a spectrum?

Solution. Light incident perpendicular to a surface is not deflected, so
light of the various frequencies in white light stays together despite the
different velocities in the glass.  

n i n r1 2sin sin=

sin

sin

i

r

v

v

n

n
= =1

2

2

1

Index of refraction    = =n
c

v
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Total Internal Reflection

The phenomenon of total internal reflection can occur when light goes
from a medium of high index of refraction to one of low index of refrac-
tion, for example, from glass or water to air. The angle of refraction in
this situation is greater than the angle of incidence, and a light ray is bent
away from the normal, as in Figure 17-7(a), at the interface between the
two media. At the critical angle of incidence, the angle of refraction is
90� (Figure 17-7(b)), and at angles of incidence greater than this, the re-
fracted rays are reflected back into the original medium (Figure 17-7(c)).
If the critical angle is ic,

Apparent Depth

An object submerged in water or other transparent liquid appears closer
to the surface than it actually is. As Figure 17-8 shows, light leaving the
object is bent away from the normal to the water-air surface as it leaves
the water. Since an observer interprets what she or he sees in terms of the
straight-line propagation of light, the object seems at a shallower depth
than its true one. The ratio between apparent and true depths is

where n1 is the index of refraction of the liquid and n2 is the index of re-
fraction of air.

Apparent depth

True depth
= ′ =h

h

n

n
2

1

sin i
n

nc = 2

1

Figure 17-8
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Chapter 18

Spherical
Mirrors

In This Chapter:

✔ Focal Length
✔ Ray Tracing
✔ Mirror Equation
✔ Magnification

Focal Length

Figure 18-1 shows how a concave mirror converges a parallel beam of
light to a real focal point F, and Figure 18-2 shows how a convex mirror
diverges a parallel beam of light so that the reflected rays appear to come
from a virtual focal point F behind the mirror. In either case, if the radius
of curvature of the mirror is R, the focal length f is R/2.  For a concave
mirror, f is positive, and for a convex mirror, f is negative. Thus

The axis of a mirror of either kind is the straight line that passes through
C and F.

Concave mirror:     

Convex mirror:     

f
R

f
R

= +

= −

2

2
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Ray Tracing

The position and size of the image formed by a spherical mirror of an ob-
ject in front of it can be found by constructing a scale drawing by tracing
two different light rays from each point of interest in the object to where
they (or their extensions, in the case of a virtual image) intersect after be-
ing reflected by the mirror. Three rays especially useful for this purpose
are shown in Figure 18-3; any two are sufficient:

Figure 18-1

Figure 18-2
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1. A ray that leaves the object parallel to the axis of the mirror. Af-
ter reflection, this ray passes through the focal point of a con-
cave mirror or seems to come from the focal point of a convex
mirror.

Figure 18-3



2. A ray that passes through the focal point of a concave mirror or
is directed toward the focal point of a convex mirror. After re-
flection, this ray travels parallel to the axis of the mirror.

3. A ray that leaves the object along a radius of the mirror. After
reflection, this ray returns along the same radius.

Mirror Equation

When an object is a distance p from a mirror of focal length f, the image
is located a distance q from the mirror, where

This equation holds for both concave and convex mirrors (see Figure 
18-4). The mirror equation is readily solved for p, q, or f :

A positive value of p or q denotes a real object or image, and a neg-
ative value denotes a virtual object or image. A real object is in front of
a mirror; a virtual object appears to be located behind the mirror and must
itself be an image produced by another mirror or lens. A real image is
formed by light rays that actually pass through the image, so a real image
will appear on the screen placed at the position of the image. But a virtu-
al image can be seen only by the eye since the light rays that appear to
come from the image actually do not pass through it. 

Remember

Real images are located in front of a
mirror, virtual images behind it.

p
qf

q f
q

pf

p f
f

pq

p q
=

−
=

−
=

+
                                   

1 1 1

1 1 1

p q f
+ =

+ =
Object distance Image distance Focal length
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Figure 18.4
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Magnification

The linear magnification m of any optical system is the ratio between the
size (height or width or other transverse linear dimensions) of the image
and the size of the object. In the case of a mirror,

A positive magnification signifies an erect image, as in Figure 18-4(b); a
negative one signifies an inverted image, as in Figure 18-4(a). Table 18.1
is a summary of the sign conventions used in connection with spherical
mirrors.

m
h

h

q

p
= ′ = −

= = −Linear magnification  
image height

object height

image distance

object distance

Table 18.1
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Chapter 19

Lenses

In This Chapter:

✔ Focal Length
✔ Ray Tracing
✔ Lens Equation
✔ Magnification
✔ Lens Systems

Focal Length

Figure 19-1 shows how a converging lens brings a par-
allel beam of light to a real focal point F, and Figure
19-2 shows how a diverging lens spreads out a parallel
beam of light so that the refracted rays appear to come
from a virtual focal point F. In this chapter, we consid-
er only thin lenses, whose thickness can be neglected
as far as optical effects are concerned. The focal length
f of a thin lens is given by the lensmaker’s equation:

In this equation, n is the index of refraction of the lens material relative
to the medium it is in, and R1 and R2 are the radii of curvature of the two

1
1

1 1

1 2f
n

R R
= −( ) +






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Ray Tracing

As with a spherical mirror, the position and size of the image of an ob-
ject formed by a lens can be found by constructing a scale drawing by
tracing two different light rays from a point of interest in the object to
where they (or their extensions, in the case of a virtual image) intersect
after being refracted by the lens. Three rays especially useful for this pur-
pose are shown in Figure 19-3; any two are sufficient:

CHAPTER 19: Lenses 125

surfaces of the lens. Both R1 and R2 are considered as plus for a convex
(curved outward) surface and as minus for a concave (curved inward) sur-
face; obviously it does not matter which surface is labeled as 1 and which
as 2.

A positive focal length corresponds to a converging lens and a neg-
ative focal length to a diverging lens.

Figure 19-1

Figure 19-2
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1. A ray that leaves the object parallel to the axis of the lens. After
refraction, this ray passes through the far focal point of a con-
verging lens or seems to come from the near focal point of a di-
verging lens.

2. A ray that passes through the focal point of a converging lens or
is directed toward the far focal point of a diverging lens. After
refraction, this ray travels parallel to this axis of the lens.

3. A ray that leaves the object and proceeds toward the center of
the lens. This ray is not deviated by refraction.

Solved Problem 19.1 What is the nature of the image of a real object
formed by a diverging lens?

Solution. It is virtual, erect, and smaller than the object, as in Figure 
19-3(b).

Figure 19-3
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Lens Equation

The object distance p, image distance q, and focal length f of a lens (Fig-
ure 19-4) are related by the lens equation:

This equation holds for both converging and diverging lenses. The lens
equation is readily solved for p, q, or f :

p
qf

q f
q

pf

p f
f

pq

p q
=

−
=

−
=

+
                                   

1 1 1

1 1 1

p q f
+ =

+ =
Object distance Image distance Focal length

Figure 19-4



128 APPLIED PHYSICS

As in the case of mirrors, a positive value of p or q denotes a real ob-
ject or image, and a negative value denotes a virtual object or image. A
real image of a real object is always on the opposite side of the lens from
the object, and a virtual image is on the same side. Thus, if a real object
is on the left of a lens, a positive image distance q signifies a real image
to the right of the lens, whereas a negative image distance q denotes a vir-
tual image to the left of the lens.

Magnification

The linear magnification m produced by a lens is given by the same for-
mula that applies for mirrors:

Again, a positive magnification signifies an erect image, a negative one
signifies an inverted image. Table 19.1 is a summary of the sign conven-
tions used in connection with lenses.

Solved Problem 18.1 A coin 3 cm in diameter is placed 24 cm from a
converging lens whose focal length is 16 cm. Find the location, size, and
nature of the image.

m
h

h

q

p
= ′ = −

= = −Linear magnification  
image height

object height

image distance

object distance

Table 19.1



CHAPTER 19: Lenses 129

Figure 19-5

Solution. Here p = 24 cm and f = +16 cm, so the image distance is 

The image is real since q is positive (Figure 19-5). The diameter of the
coin’s image is,

The image is inverted and twice as large as the object. 
In general, an object that is a distance between f and 2f from a con-

verging lens has a real, inverted image that is larger than the object.

Lens Systems

When a system of lenses is used to produce an image of an object, for in-
stance, in a telescope or microscope, the procedure for finding the posi-
tion and nature of the final image is to let the image formed by each lens
in turn be the object for the next lens in the system. Thus, to find the im-
age produced by a system of two lenses, the first step is to determine the
image formed by the lens nearest the object. This image then serves as
the object for the second lens, with the usual sign convention: If the im-
age is on the front side of the second lens, the object distance is consid-
ered positive, whereas if the image is on the back side, the object distance
is considered negative.

′ = − = −( )

 = −h h

q

p
3

48
6 cm

 cm

24 cm
 cm

q
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−
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The total magnification produced by a system of lenses is equal to
the product of the magnification of the individual lenses. Thus, if the mag-
nification of the objective lens of a microscope or telescope is m1 and that
of the eyepiece is m2, the total magnification is m = m1m2.
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Chapter 20

Physical and
Quantum Optics 

In This Chapter:

✔ Interference
✔ Diffraction
✔ Polarization
✔ Quantum Theory of Light
✔ X-rays

Interference

In examining the reflection and refraction of light, it
is sufficient to consider light as though it consisted
of rays that travel in straight lines in a uniform medi-
um. The study of such phenomena, therefore, is
called geometrical optics. Other phenomena, no-
tably interference, diffraction, and polarization, can
be understood only in terms of the wave nature of
light, and the study of these phenomena is called
physical optics.

Interference occurs when waves of the same nature from different
sources meet at the same place. In constructive interference, the waves
are in phase (“in step”) and reinforce each other; in destructive interfer-
ence, the waves are out of phase and partially or completely cancel (Fig-
ure 20-1). All types of waves exhibit interference under appropriate cir-
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cumstances. Thus, water waves interfere to produce the irregular surface
of the sea, sound waves close in frequency interfere to produce beats, and
light waves interfere to produce the fringes seen around the images
formed by optical instruments and the bright colors of soap bubbles and
thin films of oil on water.

Solved Problem 20.1 When is it appropriate to think of light as consist-
ing of waves and when as consisting of rays?

Solution. When paths or path differences are involved whose lengths are
comparable with the wavelengths found in light, the wave nature is sig-
nificant and must be taken into account. Thus, diffraction and interfer-
ence can be understood only on a wave basis. When paths are involved
that are many wavelengths long and neither diffraction not interference
occurs, as in reflection and refraction, it is more convenient to consider
light as consisting of rays.

Diffraction

The ability of a wave to bend around the edge of an obstacle is called dif-
fraction. Owing to the combined effects of diffraction and interference,
the image of a point source of light is always a small disk with bright and
dark fringes around it. The smaller the lens or mirror used to form the im-
age, the larger the disk. The angular width in radians of the image disk of
a point source is about

q
l

o D
= ( )


1 22.

Figure 20-1



where λ is the wavelength of the light and D is the lens or mirror diame-
ter. The images of objects closer than q0 will overlap and hence cannot
be resolved no matter how great the magnification produced by the lens
or mirror. In the case of a telescope or microscope, D refers to the diam-
eter of the objective lens. If two objects d0 apart that can just be resolved
at a distance L from the observer, the angle in radians between them is q0
= d0/L, so the above formula can be rewritten in the form

Polarization

A polarized beam of light is one in which the electric fields of the waves
are all in the same direction. If the electric fields are in random directions
(though, of course, always in a plane perpendicular to the direction of
propagation), the beam is unpolarized.

You Need to Know 

Various substances affect differently light with dif-
ferent directions of polarization, and these sub-
stances can be used to prepare devices that per-
mit only light polarized in a certain direction to pass
through them. 

Quantum Theory of Light

Certain features of the behavior of light can be explained only on the ba-
sis that light consists of individual quanta, or photons. The energy of a
photon of light whose frequency is f is

Quantum energy = E = hf

where h is Planck’s constant:

Resolving power  = = ( )

d

L

Do 1 22.
l
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Planck’s constant = h = 6.63 × 10−34 J�s

A photon has most of the properties associated with particles—it is lo-
calized in space and possesses energy and momentum—but it has no
mass. Photons travel with the velocity of light.

The electromagnetic and quantum theories of light complement each
other: Under some circumstances, light exhibits a wave character, under
other circumstances, it exhibits a particle character. Both are aspects of
the same basic phenomenon.

X-Rays

X-rays are high frequency electromagnetic waves produced when fast
electrons impinge on a target. If the electrons are accelerated through a
potential difference of V, each electron has the energy KE = eV. If all this
energy goes into creating an X-ray photon, then

eV = hf
Electron kinetic energy = X-ray photon energy

and the frequency of the X-rays is f = eV/h.
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Ferromagnetism, 100
Field lines, 73
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Inverses, 4
Ions, 71

Joules, 29, 31
Junctions, 83

Kilogram-meters per second, 33
Kilograms, 20
Kinetic energy, 31
Kinetic friction, 26
Kirchhoff’s rules, 83–85

Law of conservation of energy, 32
Law of conservation of linear momentum,

35
Law of cosines, 10
Law of sines, 10
Laws:

conservation of energy, 32
conservation of linear momentum, 35
cosines, 10
Coulomb’s, 71
Faraday’s, 103–104
Kirchhoff’s rules, 83–85
Lenz’s, 104
Newton’s first of motion, 19–20
Newton’s second of motion, 20–21
Newton’s third of motion, 25
Newton’s universal gravitation, 40
Ohm’s, 77
sines, 10
Snell’s, 115

Lens equation, 127–128
Lenses, 124–130
Lensmaker’s equation, 124–125
Lenz’s law, 104
Light, 108–117
Light waves, 108–109
Linear magnification, 123
Linear momentum, 33–35
Logarithms, 66–67
Longitudinal waves, 64
Loops, 83, 95–97
Lumens, 110
Luminous efficiency, 111
Luminous flux, 110–111
Luminous intensity, 109
Luxes, 112

Magnetic fields, 94–98
Magnetic flux, 103–104
Magnetic forces, 93–94, 98–100
Magnetic intensity, 100–101
Magnetism, 93–101
Magnetizing field, 101
Magnetizing force, 101
Magnification, 123, 128–129
Mass, 20
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Microfarad, 87
Microhenrys, 105
Millihenrys, 105
Mirrors, 118–123
Moment arms of the force, 45–48
Moment of inertia, 44–45
Moments of force, 48
Momentum, 33–36
Motion, 11–18, 41–50, 59–61

circular, 37–40
uniform circular, 37

Moving charges, 98

Negative charge, 70
Negative ion, 71
Net charge, 70–71
Net force, 20
Newton-seconds, 34
Newton’s laws:

first law of motion, 19–20
second law of motion, 20–21
third of motion, 25
universal gravitation, 40

Newtons (units of force), 20
Nonconcurrent forces, 54
Nucleus, 71

Ohm’s law, 77
Optics, 131–134

Parallel-plate capacitors, 87
Parallel resistors, 80–82
Paramagnetic substances, 101
Pendulums, 62–63
Periodic motion, 59–61
Periodic waves, 64
Period of simple harmonic motion, 60–61
Permanent magnets, 100
Permeability, 95
Permittivity of free space, 72
Photons, 133
Physical optics, 131–134
Physical pendulums, 63
Picofarad, 92
Planck’s constant, 133–134
Plasmas, 76

Polarization, 133
Positive charge, 70
Positive ion, 71
Potential difference, 73–74
Potential energy, 31–32, 59
Pounds, 21–22
Pound-seconds, 34
Power, 30–31
Projectile motion, 17–18
Protons, 70
Pythagorean theorem, 5–6

Quanta, 133
Quantities, 1
Quantum optics, 133–134
Quantum theory of light, 133–134

Radians, 41–42
Radio waves, 108
Ray tracing, 119–121, 125–126
Reaction force, 25
Real images, 121
Real objects, 121
Reflection of light, 113–114
Refraction of light, 114–115
Resistance, 77
Resistivity, 77–78
Resistors, 80–83
Resolving a vector, 7–9
Restoring force, 58–59
Resultants, 2
Right triangles, 4
Rotational energy, 48–49
Rotational equilibrium, 54–55
Rotational motion, 41–50

Satellite motion, 40
Scalars, 1–2
Self-induced emf, 105
Self-inductance, 105–106
Semiconductors, 76
Series, 80
Simple harmonic motion, 58–63
Simple pendulums, 62–63
Sines, 4

law, 10
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SI (Standard International system of
units), 21–22

Sliding friction, 26
Slug-feet per second, 33
Slugs, 21–22
Snell’s law, 115
Solenoids, 96, 103
Solid angles, 110
Sound waves, 67–69
Spectrums, 115–116
Spherical mirrors, 118–123
Standard International system of units

(SI), 21–22
Starting friction, 26
Static friction, 26
Steradians, 110
Straight current, 95
Systems of units, 21–22

Tangents, 4
Temperature of coefficient of resistance,

78
Tension, 22–24
Terminal velocity, 16
Teslas, 94
Thin lenses, 124
Torque, 45–48
Torsion pendulums, 63

Total internal reflection, 117
Transformers, 104–105
Transitional equilibrium, 51–53
Transverse waves, 64
Trigonometry, 3–5, 6

Unbalanced force, 20
Uniform circular motion, 37
Units, 21–22

Vector addition:
component method, 10
graphical method, 2–3
trigonometric method, 6

Vectors, 1–10
Velocity, 11–16, 42–43, 61–62, 109
Virtual images, 121
Virtual objects, 121

Watts, 30
Wavelengths, 65–66
Waves, 64–69, 108–109
Webers, 104
Weight, 21
Work, 28–30, 48–49

X-rays, 108, 134
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